Advertisement

Experiment and numerical simulation of Taylor–Couette flow controlled by oscillations of inner cylinder cross section

  • A. AbdelaliEmail author
  • H. Oualli
  • A. Rahmani
  • B. Merzkane
  • A. Bouabdallah
Technical Paper
  • 45 Downloads

Abstract

An experimental and numerical study of the controlled Taylor–Couette flow with free surface is presented in this work. It is aimed to carry out a controlling strategy based upon a combination of free surface effect and an inner cylinder cross section oscillation. Numerical simulations are performed using FLUENT software package for three-dimensional incompressible flows. The basic system geometry is characterized by a height H = 170 mm, an inner and outer cylinders with, respectively, R1 = 31.5 mm and R2 = 35 mm, a ratio of the inner to outer cylinder radii ɳ = 0.9, an aspect ratio Γ = 28.5 and a ratio of the gap to the inner cylinder radius, δ = 0.1. It is established that the first and the second instabilities are delayed. The Taylor vortices and Ekman cells can be destroyed throughout a process applicable for all the flow regimes encountered in the Taylor–Couette flow. The Taylor vortices show a particular sensitivity and can be easily destroyed using low deforming frequencies (f < 3 Hz). The Ekman cells, however, exhibit larger resistance to actuation and substantially higher deforming frequencies (f > 20 Hz) are required for the complete disappearance.

Keywords

Taylor–Couette flow Flow control Inner cylinder oscillation Taylor vortices Ekman cells 

List of symbols

ur, uθ, uz

Velocity components

r,θ,z

Cylindrical coordinates

Ta = \(Re\sqrt \delta\)

Taylor number

Tac

Critical Taylor number

\(\upsilon\)

Kinematic viscosity

f

Frequency

R1,R2

Inner and outer cylinder radii

ρ

Density

Ω1, Ω2

Inner and outer cylinder angular velocities

Hf

Height of working fluid

H

Height of cylinders

\(\dot{m}_{\text{pq}} ,\;\dot{m}_{\text{qp}}\)

Mass transfer between phases

Rmax

Maximum limit of the oscillating inner cylinder

R(t)

Instantaneous radius of the oscillating inner cylinder

d = R2 − R1

Annular gap

ε = \(\frac{{R_{ \max } - R_{1} }}{{R_{1} }}\)

Oscillating amplitude

λ

Axial wave number

Λ

Axial wavelength

Γ = \(\frac{{H_{f} }}{d}\)

Aspect ratio

\(\eta\) = \(\frac{{R_{1} }}{{R_{2} }}\)

Ratio of the radii

\(\delta\) = \(\frac{{R_{1} }}{d}\)

Gap ratio

Re = \(\frac{{\varOmega_{1} .R_{1} .d}}{\upsilon }\)

Reynolds number

α

Volume fraction

C

Cell Volume

p, q

Phases (air and liquid)

T

Cycle of deformation

dmax, dmin

Annular gap limits

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Gl Taylor (1923) Stability of a viscous liquid contained between two rotating cylinders. Philos Trans R Soc Lond A 223:289–343CrossRefGoogle Scholar
  2. 2.
    Couette M (1887) Oscillation tournante d’un solide en révolution contact avec un fluide visqueux. CR Acad Sci 105:1064–1067zbMATHGoogle Scholar
  3. 3.
    Chandrasekhar S (1961) Hydrodynamic and hydromagnetic stability. Oxford at the Clarkndon Press, OxfordzbMATHGoogle Scholar
  4. 4.
    Coles D (1965) Transition in circular Couette flow. J Fluid Mech 21:385.  https://doi.org/10.1017/S0022112065000241 CrossRefzbMATHGoogle Scholar
  5. 5.
    Diprima RC, Swinney HL (1981) Instabilities and transition in flow between concentric rotating cylinders. In: Swinney HL, Gollub JP (eds) Hydrodynamic instabilities and the transition to turbulence. Springer, Berlin, pp 139–180CrossRefGoogle Scholar
  6. 6.
    Swinney HL, Gollub JP (1975) Onset of turbulence in a rotating fluid. Phys Rev Lett 35(14):927–930CrossRefGoogle Scholar
  7. 7.
    KoschmiederE L (1993) Benard cells and Taylor vortices. Cambridge University Press, NewYorkGoogle Scholar
  8. 8.
    Benjamin TB (1978) Bifurcation phenomena in steady flows of a viscous fluid: I. theory. Proc R Soc A 359:1–26MathSciNetCrossRefGoogle Scholar
  9. 9.
    Bouabdallah A (1980) Instabilités et turbulence dans l’écoulement de Taylor–Couette. PhDThesis, INPL, FranceGoogle Scholar
  10. 10.
    Mullin T, Heise M, Pfister G (2017) Onset of cellular motion in Taylor–Couette flow. Phys Rev Fluids 2(8):081901CrossRefGoogle Scholar
  11. 11.
    Poncet S, Haddadi S, Viazzo S (2011) Numerical modeling of fluid flow and heat transfer in a narrow Taylor–Couette–Poiseuille system. Int J Heat Fluid Flow 32(1):128–144CrossRefGoogle Scholar
  12. 12.
    Khamami B (2002) The effect of viscous heating on the stability of Taylor–Couette flow. Fluid Mech 462:111–132MathSciNetCrossRefGoogle Scholar
  13. 13.
    Sobolik V, Jirout T, Havlica J, Kristiawan M (2011) Wall shear rates in Taylor vortex flow. JAFM 2(4):25–31Google Scholar
  14. 14.
    Wimmer M (1988) Viscous flows and instabilities near rotating bodies. Prog Aerosp Sci 25:43–103CrossRefGoogle Scholar
  15. 15.
    Donnelly RJ (1964) Experiments on the stability of viscous flow between rotating cylinder. III. Enhancement of stability by modulation. Proc R Soc Lond A 281:130–139CrossRefGoogle Scholar
  16. 16.
    Lopez JM, Marques F (2002) Modulated Taylor–Couette flow: onset of spiral modes. Theor Comput Fluid Dyn 16(1):59–69CrossRefGoogle Scholar
  17. 17.
    Lopez JM, Marques F (2002) Spatial and temporal resonances in a periodically forced hydrodynamic system. Phys D 136(3–4):340–352MathSciNetzbMATHGoogle Scholar
  18. 18.
    Aouidef A (1994) Centrifugal instability of pulsed flow. Phys Fluids 6:3665–3676CrossRefGoogle Scholar
  19. 19.
    Barenghi CF, Jones CA (2006) Modulated Taylor–Couette flow. J Fluid Mech 208:127–160MathSciNetCrossRefGoogle Scholar
  20. 20.
    Heinrichs RM, Cannell DS, Ahlers G, Jefferson M (1988) Experimental test of the perturbation expansion for the Taylor instability at various wavevectors. Phys Fluids 31:250–255CrossRefGoogle Scholar
  21. 21.
    Walsh TJ, Wagner WT, Donnelly RJ (1987) Stability of modulated Couette flow. Phys Rev Lett 58:2543–2546.  https://doi.org/10.1103/PhysRevLett.58.2543 CrossRefGoogle Scholar
  22. 22.
    Walsh TJ (1988) The influence of external modulation on the stability of azimuthal Taylor–Couette flow: an experimental investigation, vol 49–05. Ph. D. thesis. University of Oregon, p 1778Google Scholar
  23. 23.
    Feugaing MG, Crumeyrolle O and Mutabazi I (2011) Etude expérimentale de l’écoulement de Couette-Taylor avec modulation de fréquence. 20eme CFMGoogle Scholar
  24. 24.
    Oualli H, Lalaoua A, Hanchi S and Bouabdallah A (2013) Taylor–Couette flow control using the outer cylinder cross-section variation strategy. Eur Phys J Appl Phys 61(1)CrossRefGoogle Scholar
  25. 25.
    Oualli H, Mekadem M, Lebbi M, Bouabdallah A (2015) Taylor-Couette flow control by amplitude variation of the inner cylinder cross-section oscillation. Eur Phys J Appl Phys 71(1):11102.  https://doi.org/10.1051/epjap/2015140232 CrossRefGoogle Scholar
  26. 26.
    Lalaoua A, Bouabdallah A (2016) On the onset of Taylor vortices in finite-length cavity subject to a radial oscillation motion. J Appl Fluid Mech 9(4):1887–1896Google Scholar
  27. 27.
    Mahamadia A and Bouabdellah A (2003) Ecoulement de Tylor-Couette en géométrie finie sur à surface libre. Can J Chem EngGoogle Scholar

Copyright information

© The Brazilian Society of Mechanical Sciences and Engineering 2019

Authors and Affiliations

  1. 1.Laboratory of Fluid MechanicsEcole Militaire Polytechnique (EMP)AlgiersAlgeria
  2. 2.Laboratory of Thermodynamic and Energetical SystemsUSTHBAlgiersAlgeria

Personalised recommendations