Advertisement

Fuzzy logic-integrated PSO methodology for parameters optimization in end milling of Al/SiCp MMC

  • Devarasiddappa Devarajaiah
  • Chandrasekaran MuthumariEmail author
Technical Paper
  • 13 Downloads

Abstract

This paper deals with a novel integrated parametric optimization in end milling of Al–SiCp metal–matrix composites using carbide tool. Fuzzy logic modeling combined with particle swarm optimization (PSO) technique is applied as intelligent optimization methodology to obtain optimal process parameters in end milling process. Fuzzy rules-based surface roughness prediction model is developed with SiCp percentage as one the input parameter is addition to spindle speed, feed and depth of cut. Comparison of fuzzy rule model predictions with confirmation data sets showed 95.44% average prediction accuracy. The effect of process parameters on surface roughness is also studied. Analysis of variance established feed rate as the most significant process variable with 69.93% contribution followed by SiCp (19%) and spindle speed (9.73%), respectively. The integrated PSO optimizer optimizes the process parameters for an objective to minimize the machining time satisfying desired surface roughness to be obtained. A number of problems with different values of desired surface roughness are solved and algorithm converged in less than ten iterations.

Keywords

PSO Surface roughness Metal–matrix composites Fuzzy logic Optimization 

Notes

Acknowledgements

Authors acknowledge the sincere effort of anonymous reviewers for their constructive comments and valuable suggestions in improving the manuscript in the present form. Special thanks to the Editorial team of this journal for their kind support extended throughout the publication process.

References

  1. 1.
    Buzio R, Boragno C, Biscarini F, De Mongeot FB, Valbusal U (2003) The contact mechanics of fractal surfaces. Nat Mater 2(4):233–236CrossRefGoogle Scholar
  2. 2.
    Manna A, Bhattacharyya B (2004) Investigation for optimal parametric combination for achieving better surface finish during turning of Al/SiC-MMC. Int J Adv Manuf Technol 23:658–665CrossRefGoogle Scholar
  3. 3.
    Muthukrishnan N, Davim JP (2009) Optimization of machining parameters of Al/SiC-MMC with ANOVA and ANN analysis. J Mater Process Technol 209:225–232CrossRefGoogle Scholar
  4. 4.
    Davim JP, Antonio CAC (2001) Optimal drilling of particulate metal matrix composites based on experimental and numerical procedures. Int J Mach Tool Manuf 41(1):21–31CrossRefGoogle Scholar
  5. 5.
    Chandrasekaran M, Muralidhar M, Krishna CM, Dixit US (2010) Application of soft computing techniques in machining performance prediction and optimization: a literature review. Int J Adv Manuf Technol 46:445–464CrossRefGoogle Scholar
  6. 6.
    Davim JP (2003) Design of optimisation of cutting parameters for turning metal matrix composites based on the orthogonal arrays. J Mater Process Technol 132(1–3):340–344CrossRefGoogle Scholar
  7. 7.
    Abburi NR, Dixit US (2006) A knowledge-based system for the prediction of surface roughness in turning process. Robot Comput Integr Manuf 22(4):363–372.  https://doi.org/10.1016/j.rcim.2005.08.002 CrossRefGoogle Scholar
  8. 8.
    Samanta B, Erevelles W, Omurtag Y (2008) Prediction of work-piece surface roughness using soft computing. Proc IMechE B J Eng Manuf 222:1221–1232.  https://doi.org/10.1243/09544054JEM1035 CrossRefGoogle Scholar
  9. 9.
    Roy SS (2006) Design of genetic-fuzzy expert system for predicting surface finish in ultra-precision diamond turning of metal matrix composite. J Mater Process Technol 173:337–344CrossRefGoogle Scholar
  10. 10.
    Basheer AC, Uday AD, Suhas SJ, Bhanuprasad VV, Gadre VM (2008) Modeling of surface roughness in precision machining of metal matrix composites using ANN. J Mater Process Technol 197:439–444CrossRefGoogle Scholar
  11. 11.
    Rajasekaran T, Palanikumar K, Vinayagam B (2011) Application of fuzzy logic for modeling surface roughness in turning CFRP composites using CBN tool. Prod Eng Res Dev 5(2):191–199.  https://doi.org/10.1007/s11740-011-0297-y CrossRefGoogle Scholar
  12. 12.
    Thiagarajan C, Sivaramakrishnan R, Somasundaram S (2011) Experimental evaluation of grinding forces and surface finish in cylindrical grinding of Al/SiC metal matrix composites. Proc IMechE B J Eng Manuf 225:1606–1614.  https://doi.org/10.1177/0954405411398761 CrossRefGoogle Scholar
  13. 13.
    Latha B, Senthilkumar VS, Palanikumar K (2011) Modeling and optimization of process parameters for de-lamination in drilling glass fiber reinforced plastic (GFRP) composites. Mach Sci Technol Int J 15(2):172–191CrossRefGoogle Scholar
  14. 14.
    Ponappa K, Aravindan S, Rao VP (2011) Grinding of magnesium/Y2O3 metal matrix composites. Proc IMechE B J Eng Manuf 0(0):1–9.  https://doi.org/10.1177/0954405412454792 CrossRefGoogle Scholar
  15. 15.
    Kondayya D, Gopala KA (2011) An integrated evolutionary approach for modelling and optimization of wire electrical discharge machining. Proc IMechE B J Eng Manuf 225:549–567.  https://doi.org/10.1243/09544054JEM1975 CrossRefGoogle Scholar
  16. 16.
    Senthilkumar C, Ganesan G, Karthikeyan R (2011) Parametric optimization of electrochemical machining of Al/15% SiCp composites using NSGA-II. Trans Nonferrous Met Soc China 21:2294–2300.  https://doi.org/10.1016/s1003-6326(11)61010-8 CrossRefGoogle Scholar
  17. 17.
    Bharathi RB, Baskar N (2012) Application of Particle Swarm Optimization technique for achieving desired milled surface roughness in minimum machining time. Expert Syst Appl 39(5):5982–5989CrossRefGoogle Scholar
  18. 18.
    Dikshit MK, Asit BP, Maity A (2017) Modelling and application of response surface optimization to optimize cutting parameters for minimizing cutting forces and surface roughness in high-speed, ball-end milling of Al2014-T6. J Braz Soc Mech Sci Eng.  https://doi.org/10.1007/s40430-017-0865-y CrossRefGoogle Scholar
  19. 19.
    Raju D, Amit KB, Roy SS (2018) Application of PCA-based hybrid methodologies for parameter optimization of E-jet based micro-fabrication process: a comparative study. J Braz Soc Mech Sci Eng 40:454–466.  https://doi.org/10.1007/s40430-018-1373-4 CrossRefGoogle Scholar
  20. 20.
    Tamang SK, Chandrasekaran M (2016) Integrated optimization methodology for intelligent machining of Inconel 825 and its shop-floor application. J Braz Soc Mech Sci Eng 39:865–877.  https://doi.org/10.1007/s40430-016-0570-2 CrossRefGoogle Scholar
  21. 21.
    Rahul K, Abhishek Saurav D, Bibhuti BB, Mahapatra SS (2016) Machining performance optimization for electro-discharge machining of Inconel 601, 625, 718 and 825: an integrated optimization route combining satisfaction function, fuzzy inference system and Taguchi approach. J Braz Soc Mech Sci Eng.  https://doi.org/10.1007/s40430-016-0659-7 CrossRefGoogle Scholar
  22. 22.
    Harmesh K, Alakesh M, Rajesh K (2018) Modeling and desirability approach-based multi-response optimization of WEDM parameters in machining of aluminum metal matrix composite. J Braz Soc Mech Sci Eng 40:458–477.  https://doi.org/10.1007/s40430-018-1368-1 CrossRefGoogle Scholar
  23. 23.
    Navid E, Amir HA, Ramin V (2018) Optimal synthesis of a four-bar linkage for path generation using adaptive PSO. J Braz Soc Mech Sci Eng 40:469–480.  https://doi.org/10.1007/s40430-018-1392-1 CrossRefGoogle Scholar
  24. 24.
    Arokiadass R, Palanirajda K, Alagumoorthi N (2011) Predictive modeling of surface roughness in end milling of Al/SiCp metal matrix composite. Arch Appl Sci Res 3(2):228–236Google Scholar
  25. 25.
    Devarasiddappa D, Chandrasekaran M, Mandal A (2012) Artificial neural network modeling for predicting surface roughness in end milling of Al-SiCp metal matrix composite and its evaluation. J Appl Sci 12(10):955–962.  https://doi.org/10.3923/jas.2012.955.962 CrossRefGoogle Scholar
  26. 26.
    Dixit PM, Dixit US (2008) Modelling of metal forming and machining processes by finite element and soft computing methods. Springer, London, pp 490–491Google Scholar
  27. 27.
    Chandrasekaran M, Muralidhar M, Krishna CM, Dixit US (2012) Online machining optimization with continuous learning. In: Paulo Davim J (ed) Computational methods for optimizing manufacturing technology: models and techniques. Engineering science reference. IGI Global Publication, Hershey, PA, pp 85–110CrossRefGoogle Scholar
  28. 28.
    Kennedy J, Eberhart RC (1995) Particle swarm optimization. In: Proceedings of IEEE international conference on neural networks, University of Western Australia, Perth, Western Australia, pp 1942–1948Google Scholar
  29. 29.
    Risbood KA, Dixit US, Sahasrabudhe AD (2003) Prediction of surface roughness and dimensional deviation by measuring cutting forces and vibrations in turning process. J Mater Process Technol 132(1–3):203–214CrossRefGoogle Scholar

Copyright information

© The Brazilian Society of Mechanical Sciences and Engineering 2019

Authors and Affiliations

  • Devarasiddappa Devarajaiah
    • 1
  • Chandrasekaran Muthumari
    • 1
    Email author
  1. 1.Mechanical Engineering DepartmentNorth Eastern Regional Institute of Science and TechnologyNirjuliIndia

Personalised recommendations