Advertisement

Optimization of process parameters of direct metal laser sintering process using fuzzy-based desirability function approach

  • Hiren Maganbhai GajeraEmail author
  • Komal G. Dave
  • Veera P. Darji
  • Kumar Abhishek
Technical Paper

Abstract

CL50WS material has been mainly used in tooling industries for making die, tool insert, mould or casting die. As the manufacturing of the CL50WS material parts from the DMLS machine differs from the conventional machining process, it is very essential to understand of DMLS behaviour and determine the proper optimal process parameter. Hence, the present study highlights the application of Box–Behnken method (BBD) of response surface methodology with fuzzy-based desirability function approach in order to optimize the multiple process parameters of direct metal laser sintering. The study also focused to investigate the effects of process parameters, viz. the laser power, scanning speed, layer thickness and hatch spacing, on the performance characteristics such as surface roughness, hardness and impact strength for the fabricated specimen using response surface plot. Fuzzy inference system has been applied in order to aggregate the aforementioned performance characteristics into a single objective response, i.e. multi-performance characteristic index. The optimum values of process parameters such as laser power 130 W, scan speed 550 mm/sec, layer thickness 0.03 mm and hatch spacing of 0.010 mm have been observed in the present study.

Keywords

ANOVA FIS RSM CL50WS Surface roughness Hardness Impact strength 

Notes

References

  1. 1.
    Lee J-H, Jang J-H, Joo B-D, Yim H-S, Moon Y-H (2009) Application of direct laser metal tooling for AISI H13 tool steel. Trans Nonferrous Met Soc China 19:s284–s287CrossRefGoogle Scholar
  2. 2.
    Huang SH, Liu P, Mokasdar A, Hou L (2013) Additive manufacturing and its societal impact: a literature review. Int J Adv Manuf Technol 67(5–8):1191–1203CrossRefGoogle Scholar
  3. 3.
    Altan T, Lilly B, Yen YC (2001) Manufacturing of dies and molds. CIRP Ann Manuf Technol 50(2):404–422CrossRefGoogle Scholar
  4. 4.
    Yasa E, Kempen K, Kruth J (2010) Microstructure and mechanical properties of maraging steel 300 after selective laser melting. In: Proceedings of 21st international solid freeform fabrication symposium, pp 383–396Google Scholar
  5. 5.
    Bineli RAR, Peres APG, Jardini AL, Maciel Filho R (2011) Direct metal laser sintering (DMLS): technology for design and construction of microreactors. In: 6th Brazilian conference on manufacturing engineering, pp 1–7Google Scholar
  6. 6.
    Kempen K, Yasa E, Thijs L, Kruth JP, Van Humbeeck J (2011) Microstructure and mechanical properties of selective laser melted 18Ni-300 steel. Phys Procedia 12(Part A):255–263.  https://doi.org/10.1016/j.phpro.2011.03.033 CrossRefGoogle Scholar
  7. 7.
    Benedetti M et al (2017) The effect of post-sintering treatments on the fatigue and biological behavior of Ti–6Al–4V ELI parts made by selective laser melting. J Mech Behav Biomed Mater 71(January):295–306CrossRefGoogle Scholar
  8. 8.
    Leon A, Aghion E (2017) Effect of surface roughness on corrosion fatigue performance of AlSi10Mg alloy produced by selective laser melting (SLM). Mater Charact 131(2016):188–194CrossRefGoogle Scholar
  9. 9.
    Pal S, Tiyyagura HR, Drstvenšek I, Kumar CS (2016) The effect of post-processing and machining process parameters on properties of stainless steel PH1 product produced by direct metal laser sintering. Procedia Eng 149:359–365.  https://doi.org/10.1016/j.proeng.2016.06.679 CrossRefGoogle Scholar
  10. 10.
    Mengucci P et al (2017) Effects of build orientation and element partitioning on microstructure and mechanical properties of biomedical Ti–6Al–4V alloy produced by laser sintering. J Mech Behav Biomed Mater 71(February):1–9CrossRefGoogle Scholar
  11. 11.
    Tan C et al (2016) Microstructure and mechanical properties of 18Ni-300 maraging steel fabricated by selective laser melting. In: 6th international conference on advanced design and manufacturing engineering microstructure, 2016, no. ICADME 2016, pp 863–870Google Scholar
  12. 12.
    Casalino G, Campanelli SL, Contuzzi N, Ludovico AD (2015) Experimental investigation and statistical optimisation of the selective laser melting process of a maraging steel. Opt Laser Technol 65:151–158CrossRefGoogle Scholar
  13. 13.
    AlMangour B, Yang JM (2016) Improving the surface quality and mechanical properties by shot-peening of 17-4 stainless steel fabricated by additive manufacturing. Mater Des 110(5):914–924CrossRefGoogle Scholar
  14. 14.
    Yasa E, Poyraz O, Solakoglu EU, Akbulut G, Oren S (2016) A study on the stair stepping effect in direct metal laser sintering of a nickel-based superalloy. In: Procedia CIRP, 2016Google Scholar
  15. 15.
    Becker TH, Dimitrov D (2016) The achievable mechanical properties of SLM produced Maraging Steel 300 components. Rapid Prototyp J 22(3):487–494CrossRefGoogle Scholar
  16. 16.
    Ferreira JAM, Santos LMS, da Silva J, Costa JM, Capela C (2016) Assessment of the fatigue life on functional hybrid laser sintering steel components. Procedia Struct Integr 1:126–133.  https://doi.org/10.1016/j.prostr.2016.02.018 CrossRefGoogle Scholar
  17. 17.
    Suryawanshi J, Prashanth KG, Ramamurty U (2017) Tensile, fracture, and fatigue crack growth properties of a 3D printed maraging steel through selective laser melting. J Alloys Compd 725(25):355–364.  https://doi.org/10.1016/j.jallcom.2017.07.177 CrossRefGoogle Scholar
  18. 18.
    Sanz C, García Navas V (2013) Structural integrity of direct metal laser sintered parts subjected to thermal and finishing treatments. J Mater Process Technol 213(12):2126–2136.  https://doi.org/10.1016/j.jmatprotec.2013.06.013 CrossRefGoogle Scholar
  19. 19.
    Cajner F, Landek D, Leskov V (2010) Surface modifications of maraging steels used in the manufacture of moulds and dies. J Mater Technol 44:85–91Google Scholar
  20. 20.
    Bai Y, Yang Y, Wang D, Zhang M (2017) Influence mechanism of parameters process and mechanical properties evolution mechanism of maraging steel 300 by selective laser melting. Mater Sci Eng A 703:116–123.  https://doi.org/10.1016/j.msea.2017.06.033 CrossRefGoogle Scholar
  21. 21.
    Krishnan M et al (2014) On the effect of process parameters on properties of AlSi10Mg parts produced by DMLS. Rapid Prototyp J 20(6):449–458CrossRefGoogle Scholar
  22. 22.
    Yadollahi A, Shamsaei N, Thompson SM, Elwany A, Bian L (2017) Effects of building orientation and heat treatment on fatigue behavior of selective laser melted 17-4 PH stainless steel. Int J Fatigue 94:218–235CrossRefGoogle Scholar
  23. 23.
    Wang Z, Palmer TA, Beese AM (2016) Effect of processing parameters on microstructure and tensile properties of austenitic stainless steel 304L made by directed energy deposition additive manufacturing. Acta Mater 110:226–235.  https://doi.org/10.1016/j.actamat.2016.03.019 CrossRefGoogle Scholar
  24. 24.
    Guan K, Wang Z, Gao M, Li X, Zeng X (2013) Effects of processing parameters on tensile properties of selective laser melted 304 stainless steel. Mater Des 50:581–586.  https://doi.org/10.1016/j.matdes.2013.03.056 CrossRefGoogle Scholar
  25. 25.
    Klocke F, Arntz K, Teli M, Winands K, Wegener M, Oliari S (2017) State-of-the-art laser additive manufacturing for hot-work tool steels. Procedia CIRP 63:58–63CrossRefGoogle Scholar
  26. 26.
    Kumar N, Kumar H, Khurmi JS (2016) Experimental investigation of process parameters for rapid prototyping technique (selective laser sintering) to enhance the part quality of prototype by Taguchi method. Procedia Technol 23:352–360.  https://doi.org/10.1016/j.protcy.2016.03.037 CrossRefGoogle Scholar
  27. 27.
    Hussain M, Mandal V, Kumar V, Das AK, Ghosh SK (2017) Development of TiN particulates reinforced SS316 based metal matrix composite by direct metal laser sintering technique and its characterization. Opt Laser Technol 97:46–59CrossRefGoogle Scholar
  28. 28.
    Kirboga S, Öner M (2013) Application of experimental design for the precipitation of calcium carbonate in the presence of biopolymer. Powder Technol 249:95–104.  https://doi.org/10.1016/j.powtec.2013.07.015 CrossRefGoogle Scholar
  29. 29.
    Myers RH, Montgomery DC, Anderson-Cook CM (2009) Response Surface Methodology: Process and Product Optimization Using Designed Experiments. John Wiley and Sons, HobokenGoogle Scholar
  30. 30.
    Esakki B, Rajamani D, Arunkumar P (2017) Modeling and prediction of optimal process parameters in wear behaviour of selective inhibition sintered high density polyethylene parts. Prog Addit Manuf 3:109–121CrossRefGoogle Scholar
  31. 31.
    Khajeh M (2009) Application of Box-Behnken design in the optimization of a magnetic nanoparticle procedure for zinc determination in analytical samples by inductively coupled plasma optical emission spectrometry. J Hazard Mater 172(1):385–389.  https://doi.org/10.1016/j.jhazmat.2009.07.025 CrossRefGoogle Scholar
  32. 32.
    Martinez-Conesa EJ, Egea JA, Miguel V, Toledo C, Meseguer-Valdenebro JL (2017) Optimization of geometric parameters in a welded joint through response surface methodology. Constr Build Mater 154:105–114CrossRefGoogle Scholar
  33. 33.
    Kirboga S, Öner M (2017) Investigating the effect of ultrasonic irradiation on synthesis of calcium carbonate using Box–Behnken experimental design. Powder Technol 308:442–450CrossRefGoogle Scholar
  34. 34.
    Letenneur M, Brailovski V, Kreitcberg A, Paserin V, Bailon-Poujol I (2017) Laser powder bed fusion of water-atomized iron-based powders: process optimization. J Manuf Mater Process 1(2):23.  https://doi.org/10.3390/jmmp10200232017 CrossRefGoogle Scholar
  35. 35.
    ASTM (2016) ASTM E23-16b: standard test methods for notched bar impact testing of metallic materials. ASTM B Stand i:1–26Google Scholar
  36. 36.
    ASTM E18-15 (2015) Standard test methods for rockwell hardness of metallic materials. ASTM International, West Conshohocken, PA.  https://doi.org/10.1520/E0018-15
  37. 37.
    Kruth JP, Mercelis P, Van Vaerenbergh J, Froyen L, Rombouts M (2005) Binding mechanisms in selective laser sintering and selective laser melting. Rapid Prototyp J 11:26–36CrossRefGoogle Scholar
  38. 38.
    Lu Y et al (2015) Investigation on the microstructure, mechanical property and corrosion behavior of the selective laser melted CoCrW alloy for dental application. Mater Sci Eng C 49:517–525.  https://doi.org/10.1016/j.msec.2015.01.023 CrossRefGoogle Scholar
  39. 39.
    Casalino G, Campanelli SL, Contuzzi N, Ludovico AD (2015) Experimental investigation and statistical optimisation of the selective laser melting process of a maraging steel. Opt Laser Technol 65:151–158.  https://doi.org/10.1016/j.optlastec.2014.07.021 CrossRefGoogle Scholar
  40. 40.
    Kruth J-P, Badrossamay M, Yasa E, Deckers J, Thijs L, Van Humbeeck J (2010) Part and material properties in selective laser melting of metals. In: Proceedings of the 16th international symposium on electromachining, pp 1–12Google Scholar
  41. 41.
    Singh A, Datta S, Mahapatra SS, Singha T, Majumdar G (2013) Optimization of bead geometry of submerged arc weld using fuzzy based desirability function approach. J Intell Manuf 24(1):35–44CrossRefGoogle Scholar

Copyright information

© The Brazilian Society of Mechanical Sciences and Engineering 2019

Authors and Affiliations

  • Hiren Maganbhai Gajera
    • 1
    • 2
    Email author
  • Komal G. Dave
    • 2
  • Veera P. Darji
    • 1
  • Kumar Abhishek
    • 3
  1. 1.Mechanical EngineeringC.U. Shah UniversitySurendranagar, WadhwanIndia
  2. 2.Mechanical DepartmentL.D. Engineering CollegeAhmedabadIndia
  3. 3.Mechanical DepartmentIITRAMAhmedabadIndia

Personalised recommendations