Advertisement

Dissipative particle dynamics simulation of magnetorheological fluids in shear flow

  • Arash Jafari Gharibvand
  • Mahmood NorouziEmail author
  • Mohammad Mohsen Shahmardan
Technical Paper
  • 22 Downloads

Abstract

In the present study, the behavior of a magnetorheological fluid (MRF) in shear flow is investigated using dissipative particle dynamics (DPD), a particle-based method. The solid particles in the MRF are modeled by a magnetization model, and Lennard-Jones potential is used to simulate the interaction between the solid and the liquid phases. The columnar structure (chain) of the solid particles along the applied magnetic field direction is modeled that is similar to previous experimental observations. Subsequently, this complex fluid is simulated under shear flow and the velocity profiles depict the “plug region”. The effect of shear rate and area fraction on the rheological properties is investigated by Irving–Kirkwood model. The DPD simulation results indicate a shear-thinning and viscoplastic behavior of MRF which is similar to experimental reports. Following, the effect of magnetization of solid particles is also studied and it is shown that the MR effect is significantly dependent to the solid particle magnetism. Furthermore, the results show that the viscosity of base fluid has a considerable effect on the dynamic range of this smart fluid.

Keywords

Dissipative particle dynamics Magnetorheological fluid Coarse-grained method Shear-thinning regime 

Notes

Acknowledgements

The authors would like to express their gratitude to Professor Nhan Phan-Thien (National University of Singapore) for his valuable discussions and guidance during the present research.

References

  1. 1.
    Rabinow J (1948) The magnetic fluid clutch. Trans Am Inst Electr Eng 67:1308–1315.  https://doi.org/10.1109/T-AIEE.1948.5059821 CrossRefGoogle Scholar
  2. 2.
    Ashtiani M, Hashemabadi SH, Ghaffari A (2015) A review on the magnetorheological fluid preparation and stabilization. J Magn Magn Mater 374:716–730.  https://doi.org/10.1016/j.jmmm.2014.09.020 CrossRefGoogle Scholar
  3. 3.
    Premalatha SE, Chokkalingam R, Mahendran M (2012) Magneto mechanical properties of iron based MR fluids. Am J Polym Sci 2:50–55.  https://doi.org/10.5923/j.ajps.20120204.01 CrossRefGoogle Scholar
  4. 4.
    de Vicente J, Klingenberg DJ, Hidalgo-Alvarez R (2011) Magnetorheological fluids: a review. Soft Matter 7:3701.  https://doi.org/10.1039/c0sm01221a CrossRefGoogle Scholar
  5. 5.
    Yamaguchi H, Niu XD, Ye XJ, Li M, Iwamoto Y (2012) Dynamic rheological properties of viscoelastic magnetic fluids in uniform magnetic fields. J Magn Magn Mater 324:3238–3244.  https://doi.org/10.1016/j.jmmm.2012.04.006 CrossRefGoogle Scholar
  6. 6.
    Rabbani Y, Ashtiani M, Hashemabadi SH (2015) An experimental study on the effects of temperature and magnetic field strength on the magnetorheological fluid stability and MR effect. Soft Matter 11:4453–4460.  https://doi.org/10.1039/c5sm00625b CrossRefGoogle Scholar
  7. 7.
    Kordonski W, Jacobs S (1996) Model of magnetorheological finishing. J Intell Mater Syst Struct 7:131–137.  https://doi.org/10.1177/1045389X9600700202 CrossRefGoogle Scholar
  8. 8.
    Wereley NM, Pang L (1998) Nondimensional analysis of semi-active electrorheological and magnetorheological dampers using approximate parallel plate models. Smart Mater Struct 7:732–743.  https://doi.org/10.1088/0964-1726/7/5/015 CrossRefGoogle Scholar
  9. 9.
    Deshmukh SS (2007) Development, characterization and applications of magnetorheological fluid based “smart” materials on the macro-to-micro scale. Massachusetts Institute of Technology. http://hdl.handle.net/1721.1/38697
  10. 10.
    Milecki A, Hauke M (2012) Application of magnetorheological fluid in industrial shock absorbers. Mech Syst Signal Process 28:528–541.  https://doi.org/10.1016/j.ymssp.2011.11.008 CrossRefGoogle Scholar
  11. 11.
    Gordaninejad F, Kelso SP (2000) Magneto-rheological fluid shock absorbers for HMMWV. Smart Struct Mater Damp Isol 3989(2000):266–273.  https://doi.org/10.1117/12.384562 CrossRefGoogle Scholar
  12. 12.
    Ericksen EO, Gordaninejad F (2003) A magneto-rheological fluid shock absorber for an off-road motorcycle. Int J Veh Des 33:139.  https://doi.org/10.1504/IJVD.2003.003574 CrossRefGoogle Scholar
  13. 13.
    Ahmadkhanlou F (2008) Design, modeling and control of magnetorheological fluid-based force feedback dampers for telerobotic systems. The Ohio State University, ColumbusGoogle Scholar
  14. 14.
    Carlson D, Marjoram B, Toscano J, Leroy D, Burson K, St Clair K, Kintz A (2007) Magneto-rheological technology and applications. https://www.lord.com/
  15. 15.
    Oh JK, Park JM (2011) Iron oxide-based superparamagnetic polymeric nanomaterials: design, preparation, and biomedical application. Prog Polym Sci 36:168–189.  https://doi.org/10.1016/j.progpolymsci.2010.08.005 CrossRefGoogle Scholar
  16. 16.
    Chen C-I, Chen C-K, Yang Y-T (2004) Unsteady unidirectional flow of Bingham fluid between parallel plates with different given volume flow rate conditions. Appl Math Model 28:697–709.  https://doi.org/10.1016/j.apm.2003.12.004 CrossRefzbMATHGoogle Scholar
  17. 17.
    Wereley NM (2006) Bidisperse magnetorheological fluids using Fe particles at nanometer and micron scale. J Intell Mater Syst Struct 17:393–401.  https://doi.org/10.1177/1045389X06056953 CrossRefGoogle Scholar
  18. 18.
    Hong SR, Wereley NM, Choi YT, Choi SB (2008) Analytical and experimental validation of a nondimensional Bingham model for mixed-mode magnetorheological dampers. J Sound Vib 312:399–417.  https://doi.org/10.1016/j.jsv.2007.07.087 CrossRefGoogle Scholar
  19. 19.
    Yu M, Wang S, Fu J, Peng Y (2013) Unsteady analysis for oscillatory flow of magnetorheological fluid dampers based on Bingham plastic and Herschel–Bulkley models. J Intell Mater Syst Struct 24:1067–1078.  https://doi.org/10.1177/1045389X13476151 CrossRefGoogle Scholar
  20. 20.
    Phan-Thien N (2013) Understanding viscoelasticity: an introduction to rheology, 2nd edn. Springer, Berlin.  https://doi.org/10.1007/978-3-642-32958-6 CrossRefGoogle Scholar
  21. 21.
    Gertzos KP, Nikolakopoulos PG, Papadopoulos CA (2008) CFD analysis of journal bearing hydrodynamic lubrication by Bingham lubricant. Tribol Int 41:1190–1204.  https://doi.org/10.1016/j.triboint.2008.03.002 CrossRefGoogle Scholar
  22. 22.
    Hoogerbrugge PJ, Koelman JMVA (1992) Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. EPL (Europhysics Lett) 19:155–160CrossRefGoogle Scholar
  23. 23.
    Espanol P, Warren P (1995) Statistical mechanics of dissipative particle dynamics. EPL (Europhysics Lett) 30:191–196.  https://doi.org/10.1209/0295-5075/30/4/001 CrossRefGoogle Scholar
  24. 24.
    Kong Y, Manke CW, Madden WG, Schlijper AG (1997) Effect of solvent quality on the conformation and relaxation of polymers via dissipative particle dynamics. J Chem Phys 107:592.  https://doi.org/10.1063/1.474420 CrossRefGoogle Scholar
  25. 25.
    Gibson JB, Zhang K, Chen K, Chynoweth S, Manke CW (1999) Simulation of colloid-polymer systems using dissipative particle dynamics. Mol Simul 23:37–41.  https://doi.org/10.1080/08927029908022109 CrossRefGoogle Scholar
  26. 26.
    Chen S, Phan-Thien N, Fan X-J, Khoo BC (2004) Dissipative particle dynamics simulation of polymer drops in a periodic shear flow. J NonNewton Fluid Mech 118:65–81.  https://doi.org/10.1016/j.jnnfm.2004.02.005 CrossRefzbMATHGoogle Scholar
  27. 27.
    Maiti A, Wescott J, Kung P (2005) Nanotube–polymer composites: insights from Flory-Huggins theory and mesoscale simulations. Mol Simul 31:143–149.  https://doi.org/10.1080/08927020412331308539 CrossRefGoogle Scholar
  28. 28.
    Zheng LS, Yang YQ, Guo XD, Sun Y, Qian Y, Zhang LJ (2011) Mesoscopic simulations on the aggregation behavior of pH-responsive polymeric micelles for drug delivery. J Colloid Interface Sci 363:114–121.  https://doi.org/10.1016/j.jcis.2011.07.040 CrossRefGoogle Scholar
  29. 29.
    Danioko S, Laradji M (2012) Tumbling, stretching and cross-stream migration of polymers in rectilinear shear flow from dissipative particle dynamics simulations. Phys A Stat Mech Appl 391:3379–3391.  https://doi.org/10.1016/j.physa.2012.02.018 CrossRefGoogle Scholar
  30. 30.
    Nardai MM, Zifferer G (2013) Shielding effects in polymer-polymer reactions. V. Concentration dependence of contact formation between star-branched and linear chains 54:4183–4193.  https://doi.org/10.1016/j.polymer.2013.05.055 CrossRefGoogle Scholar
  31. 31.
    Novik KE, Coveney PV (1997) Using dissipative particle dynamics to model binary immiscible fluids. Int J Mod Phys C 8:909–918.  https://doi.org/10.1142/S0129183197000783 CrossRefGoogle Scholar
  32. 32.
    Tiwari A, Abraham J (2006) Dissipative-particle-dynamics model for two-phase flows. Phys Rev E 74:056701.  https://doi.org/10.1103/PhysRevE.74.056701 MathSciNetCrossRefGoogle Scholar
  33. 33.
    Liu M, Meakin P, Huang H (2007) Dissipative particle dynamics simulation of multiphase fluid flow in microchannels and microchannel networls. Water Resour Res 43:1–14.  https://doi.org/10.1029/2006WR004856 CrossRefzbMATHGoogle Scholar
  34. 34.
    Goel H, Chandran PR, Mitra K, Majumdar S, Ray P (2014) Estimation of interfacial tension for immiscible and partially miscible liquid systems by dissipative particle dynamics. Chem Phys Lett 600:62–67.  https://doi.org/10.1016/j.cplett.2014.03.061 CrossRefGoogle Scholar
  35. 35.
    Pan D, Phan-Thien N, Khoo BC (2014) Studies on liquid–liquid interfacial tension with standard dissipative particle dynamics method. Mol Simul.  https://doi.org/10.1080/08927022.2014.952636 CrossRefGoogle Scholar
  36. 36.
    Arienti M, Pan W, Li X, Karniadakis G, Arienti M, Pan W, Li X, Karniadakis G (2011) Many-body dissipative particle dynamics simulation of liquid/vapor and liquid/solid interactions. J Chem Phys 134:204114.  https://doi.org/10.1063/1.3590376 CrossRefGoogle Scholar
  37. 37.
    Koelman JMVA, Hoogerbrugge PJ (1993) Dynamic simulations of hard-sphere suspensions under steady shear. Europhys Lett 21:363–368.  https://doi.org/10.1209/0295-5075/21/3/018 CrossRefGoogle Scholar
  38. 38.
    Boek ES, Coveney PV, Lekkerkerker HNW (1996) Computer simulation of rheological phenomena in dense colloidal suspensions with dissipative particle dynamics. J Phys Condens Matter 8:9509.  https://doi.org/10.1088/0953-8984/8/47/053 CrossRefGoogle Scholar
  39. 39.
    Gibson JB, Chen K, Chynoweth S (1998) Simulation of particle adsorption onto a polymer-coated surface using the dissipative particle dynamics method. J Colloid Interface Sci 206:464–474.  https://doi.org/10.1006/jcis.1998.5734 CrossRefGoogle Scholar
  40. 40.
    Dzwinel W, Yuen DA (2000) A two-level, discrete-particle approach for simulating ordered colloidal structures. J Colloid Interface Sci 225:179–190.  https://doi.org/10.1006/jcis.2000.6751 CrossRefGoogle Scholar
  41. 41.
    Pivkin IV, Karniadakis GE (2008) Accurate coarse-grained modeling of red blood cells. Phys Rev Lett 101:118105.  https://doi.org/10.1103/PhysRevLett.101.118105 CrossRefGoogle Scholar
  42. 42.
    Fedosov DA, Caswell B, Karniadakis GE (2010) Systematic coarse-graining of spectrin-level red blood cell models. Comput Methods Appl Mech Eng 199:1937–1948.  https://doi.org/10.1016/j.cma.2010.02.001 MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Pan W, Fedosov DA, Caswell B, Karniadakis GE (2011) Predicting dynamics and rheology of blood flow: a comparative study of multiscale and low-dimensional models of red blood cells. Microvasc Res 82:163–170.  https://doi.org/10.1016/j.mvr.2011.05.006 CrossRefGoogle Scholar
  44. 44.
    Pivkin IV, Richardson PD, Karniadakis GE (2012) Effect of red blood cells on platelet aggregation. Eng Med Biol Mag 2:32–37.  https://doi.org/10.1109/MEMB.2009.931788 CrossRefGoogle Scholar
  45. 45.
    Fedosov DA, Dao M, Karniadakis GE, Suresh S (2014) Computational biorheology of human blood flow in health and disease. Ann Biomed Eng 42:368–387.  https://doi.org/10.1007/s10439-013-0922-3 CrossRefGoogle Scholar
  46. 46.
    Fan X, Phan-Thien N, Chen S, Wu X, Ng TY (2006) Simulating flow of DNA suspension using dissipative particle dynamics. Phys Fluids 18:1–10.  https://doi.org/10.1063/1.2206595 CrossRefzbMATHGoogle Scholar
  47. 47.
    Symeonidis V, Em Karniadakis G, Caswell B (2005) Dissipative particle dynamics simulations of polymer chains: scaling laws and shearing response compared to DNA experiments. Phys Rev Lett 95:076001.  https://doi.org/10.1103/physrevlett.95.076001 CrossRefGoogle Scholar
  48. 48.
    Groot RD, Rabone KL (2001) Mesoscopic simulation of cell membrane damage, morphology change and rupture by nonionic surfactants. Biophys J 81:725–736.  https://doi.org/10.1016/S0006-3495(01)75737-2 CrossRefGoogle Scholar
  49. 49.
    Sperotto MM, May S, Baumgaertner A (2006) Modelling of proteins in membranes. Chem Phys Lipids 141:2–29.  https://doi.org/10.1016/j.chemphyslip.2006.02.024 CrossRefGoogle Scholar
  50. 50.
    Grafmüller A, Shillcock J, Lipowsky R (2009) The fusion of membranes and vesicles: pathway and energy barriers from dissipative particle dynamics. Biophys J 96:2658–2675.  https://doi.org/10.1016/j.bpj.2008.11.073 CrossRefGoogle Scholar
  51. 51.
    Mercker M, Ptashnyk M, Kühnle J, Hartmann D, Weiss M, Jӓger W (2012) A multiscale approach to curvature modulated sorting in biological membranes. J Theor Biol 301:67–82.  https://doi.org/10.1016/j.jtbi.2012.01.039 MathSciNetCrossRefzbMATHGoogle Scholar
  52. 52.
    Mills ZG, Mao W, Alexeev A (2013) Mesoscale modeling: solving complex flows in biology and biotechnology. Trends Biotechnol 31:426–434.  https://doi.org/10.1016/j.tibtech.2013.05.001 CrossRefGoogle Scholar
  53. 53.
    Satoh A, Chantrell RW (2006) Application of the dissipative particle dynamics method to magnetic colloidal dispersions. Mol Phys 104:3287–3302.  https://doi.org/10.1080/00268970601094437 CrossRefGoogle Scholar
  54. 54.
    Li W, Ouyang J, Zhuang X (2015) Dissipative particle dynamics simulation for the microstructures of ferromagnetic fluids. Soft Mater.  https://doi.org/10.1080/1539445x.2016.1150293 CrossRefGoogle Scholar
  55. 55.
    Bossis G, Lacis S, Meunier A, Volkova O (2002) Magnetorheological fluids. J Magn Magn Mater 252:224–228.  https://doi.org/10.1016/s0304-8853(02)00680-7 CrossRefGoogle Scholar
  56. 56.
    Satoh A (2011) Introduction to practice of molecular simulation. Elsevier, New York.  https://doi.org/10.1016/b978-0-12-385148-2.00008-2 CrossRefGoogle Scholar
  57. 57.
    Groot RD, Warren PB (1997) Dissipative particle dynamics: bridging the gap between atomistic and mesoscopic simulation. J Chem Phys 107:4423.  https://doi.org/10.1063/1.474784 CrossRefGoogle Scholar
  58. 58.
    Rosenweig RE (1985) Ferrohydrodynamics. Cambridge University Press, CambridgeGoogle Scholar
  59. 59.
    Nikunen P, Karttunen M (2003) How would you integrate the equations of motion in dissipative particle dynamics simulations? Comput Phys 153:407–421.  https://doi.org/10.1016/S0010-4655(03)00202-9 CrossRefGoogle Scholar
  60. 60.
    Lees AW, Edwards SF (1972) The computer study of transport processes under extreme conditions. J Phys C Solid State Phys 5:1921–1929.  https://doi.org/10.1088/0022-3719/5/15/006 CrossRefGoogle Scholar
  61. 61.
    Irving JH, Kirkwood JG (1950) The statical mechanical theory of transport Processes. IV. The equations of hydrodynamics. J Chem Phys 18:817.  https://doi.org/10.1063/1.1747782 MathSciNetCrossRefGoogle Scholar
  62. 62.
    Backer JA, Lowe CP, Hoefsloot HCJ, Iedema PD (2005) Poiseuille flow to measure the viscosity of particle model fluids. J Chem Phys 122:1–6.  https://doi.org/10.1063/1.1883163 CrossRefGoogle Scholar

Copyright information

© The Brazilian Society of Mechanical Sciences and Engineering 2019

Authors and Affiliations

  • Arash Jafari Gharibvand
    • 1
  • Mahmood Norouzi
    • 1
    Email author
  • Mohammad Mohsen Shahmardan
    • 1
  1. 1.Department of Mechanical EngineeringShahrood University of TechnologyShahroodIran

Personalised recommendations