Advertisement

Lower gamma band in the classification of left and right elbow movement in real and imaginary tasks

  • E. Y. VeslinEmail author
  • M. S. Dutra
  • L. Bevilacqua
  • L. S. C. Raptopoulos
  • W. S. Andrade
  • A. S. Pereira
  • M. Fiorani
  • J. G. M. Soares
Technical Paper
  • 42 Downloads

Abstract

In this article, the activity of lower gamma band was used to classify right and left elbow movements performed from real and imaginary tasks in two different cognitive states: the preparation and the movement execution. Discriminability maps were used both to generalize the signal behavior of all the volunteers and to select time intervals of high discrimination among classes. The features extracted from chosen intervals were tested in eight different classification algorithms. To improve classes discrimination, LDA was used for dimensional reduction. Algorithms were tested using a fivefold cross-validation. The results showed similar signal activity for both real and imaginary actions, obtaining closer classification responses among all volunteers. The tested algorithm gave a mean classification success up to 70%, with minor differences between the type of task and the cognitive state.

Keywords

Electroencephalography Machine learning Gamma band Brain–computer interfaces Rehabilitation robotics 

Notes

Acknowledgements

The authors would like to thank FINEP, CNPq, FAPERJ, Fundao COPPETEC and DIPPG/CEFET-RJ for supporting our works, the students Edwiges Beatriz Coimbra de Souza e Aline Macedo Rocha Rodriguez for helping in the EEG data acquisition, and Marco Vinicio Chiorri for technical assistance.

References

  1. 1.
    Ahn M, Ahn S, Hong JH, Cho H, Kim K, Kim BS, Chang JW, Jun SC (2013) Gamma band activity associated with bci performance: simultaneous meg/eeg study. Front Hum Neurosci 7:848Google Scholar
  2. 2.
    Akrami A, Solhjoo S, Motie-Nasrabadi A, Hashemi-Golpayegani MR (2005) Eeg-based mental task classification: linear and nonlinear classification of movement imagery. In: Proceedings of the 2005 IEEE engineering in medicine and biology 27th annual, pp 1–4Google Scholar
  3. 3.
    Aoki F, Fetz E, Shupe L, Lettich E, Ojemann G (1999) Increased gamma-range activity in human sensorimotor cortex during performance of visuomotor tasks. Clin Neurophysiol 110(3):524–537Google Scholar
  4. 4.
    Banville H, Falk T (2016) Recent advances and open challenges in hybrid brain–computer interfacing: a technological review of non-invasive human research. Brain-Computer Interfaces 3(1):9–46Google Scholar
  5. 5.
    Başar E, Başar-Eroglu C, Karakaş S, Schürmann M (2001) Gamma, alpha, delta, and theta oscillations govern cognitive processes. Int J Psychophysiol 39(2):241–248Google Scholar
  6. 6.
    Besserve M, Jerbi K, Laurent F, Baillet S, Martinerie J, Garnero L (2007) Classification methods for ongoing eeg and meg signals. Biol Res 40(4):415–437Google Scholar
  7. 7.
    Bishop CM (2006) Pattern recognition & machine learning. Springer, BerlinzbMATHGoogle Scholar
  8. 8.
    Blankertz B, Lemm S, Treder M, Haufe S, Müller KR (2011) Single-trial analysis and classification of erp componentsa tutorial. NeuroImage 56(2):814–825Google Scholar
  9. 9.
    Cassim F, Szurhaj W, Sediri H, Devos D, Bourriez JL, Poirot I, Derambure P, Defebvre L, Guieu JD (2000) Brief and sustained movements: differences in event-related (de) synchronization (erd/ers) patterns. Clin Neurophysiol 111(11):2032–2039Google Scholar
  10. 10.
    Frolov A, Biryukova E, Bobrov P, Mokienko O, Platonov A, Pryanichnikov V, Chernikova L (2013) Principles of neurorehabilitation based on the brain–computer interface and biologically adequate control of the exoskeleton. Hum Physiol 39(2):196–208Google Scholar
  11. 11.
    Frolov A, Húsek D, Bobrov P, Mokienko O, Tintera J (2013) Sources of electrical brain activity most relevant to performance of brain–computer interface based on motor imagery. In: Brain–computer interface systems-recent progress and future prospects, pp 175–193Google Scholar
  12. 12.
    Gandhi T, Panigrahi BK, Anand S (2011) A comparative study of wavelet families for eeg signal classification. Neurocomputing 74(17):3051–3057Google Scholar
  13. 13.
    Ginter J Jr, Blinowska K, Kamin M, Durka P, Pfurtscheller G, Neuper C et al (2005) Propagation of eeg activity in the beta and gamma band during movement imagery in humans. Methods Arch 44(1):106–113Google Scholar
  14. 14.
    Glassman EL (2005) A wavelet-like filter based on neuron action potentials for analysis of human scalp electroencephalographs. IEEE Trans Biomed Eng 52(11):1851–1862Google Scholar
  15. 15.
    Hochberg LR, Serruya MD, Friehs GM, Mukand JA, Saleh M, Caplan AH, Branner A, Chen D, Penn RD, Donoghue JP (2006) Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature 442(7099):164–171Google Scholar
  16. 16.
    Jeon Y, Namb CS, Kim YJ, Whang MC (2011) Event-related (de)synchronization (erd/ers) during motor imagery tasks: implications for brain–computer interfaces. Int J Ind Ergon 41:428–436Google Scholar
  17. 17.
    Khan YU, Sepulveda F (2010) Brain-computer interface for single-trial eeg classification for wrist movement imagery using spatial filtering in the gamma band. IET Signal Process 4(5):510–517Google Scholar
  18. 18.
    Lalitharatne TD, Yoshino A, Hayashi Y, Teramoto K, Kiguchi K (2012) Toward eeg control of upper limb power-assist exoskeletons: a preliminary study of decoding elbow joint velocities using eeg signals. In: 2012 international symposium on micro-nano mechatronics and human science (MHS). IEEE, pp 421–424Google Scholar
  19. 19.
    Lana EP, Adorno BV, Tierra-Criollo CJ (2015) Detection of movement intention using eeg in a human–robot interaction environment. Res Biomed Eng 31(4):285–294Google Scholar
  20. 20.
    Lemm S, Blankertz B, Dickhaus T, Müller KR (2011) Introduction to machine learning for brain imaging. Neuroimage 56(2):387–399Google Scholar
  21. 21.
    Mensh BD, Werfel J, Seung HS (2004) Bci competition 2003-data set ia: combining gamma-band power with slow cortical potentials to improve single-trial classification of electroencephalographic signals. IEEE Trans Biomed Eng 51(6):1052–1056Google Scholar
  22. 22.
    Miller KJ, Shenoy P, Den Nijs M, Sorensen LB, Rao RP, Ojemann JG (2008) Beyond the gamma band: the role of high-frequency features in movement classification. IEEE Trans Biomed Eng 55(5):1634–1637Google Scholar
  23. 23.
    Mirnaziri M, Rahimi M, Alavikakhaki S, Ebrahimpour R (2013) Using combination of \(\mu \), \(\beta \) and \(\gamma \) bands in classification of eeg signals. Basic Clin Neurosci 4(1):76Google Scholar
  24. 24.
    Mueller-Putz G, Scherer R, Pfurtscheller G, Neuper C (2010) Temporal coding of brain patterns for direct limb control in humans. Front Neurosci 4:34Google Scholar
  25. 25.
    Palaniappan R (2006) Utilizing gamma band to improve mental task based brain–computer interface design. IEEE Trans Neural Syst Rehabil Eng 14(3):299–303Google Scholar
  26. 26.
    Pfurtscheller G, da Silva FL (1999) Event-related eeg/meg synchronization and desynchronization: basic principles. Clin Neurophysiol 110:1842–1857Google Scholar
  27. 27.
    Pfurtscheller G, Neuper C, Kalcher J (1993) 40-Hz oscillations during motor behavior in man. Neurosci Lett 164(1):179–182Google Scholar
  28. 28.
    Pfurtscheller G, Graimann B, Huggins JE, Levine SP, Schuh LA (2003) Spatiotemporal patterns of beta desynchronization and gamma synchronization in corticographic data during self-paced movement. Clin Neurophysiol 114(7):1226–1236Google Scholar
  29. 29.
    Pfurtscheller G, Brunner C, Schlo A, da Silva FL (2006) Mu rhythm (de)synchronization and eeg single-trial classification of different motor imagery tasks. NeuroImage 31(153):159Google Scholar
  30. 30.
    Pineda JA (2005) The functional significance of mu rhythms: translating seeing and hearing into doing. Brain Res Rev 50(1):57–68Google Scholar
  31. 31.
    Ramos-Murguialday A, Birbaumer N (2015) Brain oscillatory signatures of motor tasks. J Neurophysiol 113(10):3663–3682Google Scholar
  32. 32.
    Ravi K, Palaniappan R (2006) Neural network classification of late gamma band electroencephalogram features. Soft Comput 10(2):163–169Google Scholar
  33. 33.
    Robinson N, Vinod AP, Ang KK, Tee KP, Guan CT (2013) Eeg-based classification of fast and slow hand movements using wavelet-csp algorithm. IEEE Trans Biomed Eng 60(8):2123–2132Google Scholar
  34. 34.
    Roy R, Mahadevappa M, Kumar C (2016) Trajectory path planning of eeg controlled robotic arm using ga. Procedia Comput Sci 84:147–151Google Scholar
  35. 35.
    Ryun S, Kim JS, Jeon E, Chung CK (2017) Movement classification using ecog high-gamma powers from human sensorimotor area during active movement. In: 2017 5th international winter conference on brain-computer interface (BCI). IEEE, pp 96–98Google Scholar
  36. 36.
    Salari N, Rose M (2013) A brain–computer-interface for the detection and modulation of gamma band activity. Brain Sci 3(4):1569–1587Google Scholar
  37. 37.
    Salvaris M, Sepulveda F (2010) Classification effects of real and imaginary movement selective attention tasks on a p300-based brain–computer interface. J Neural Eng 7(5):056,004Google Scholar
  38. 38.
    Scherer R, Zanos SP, Miller KJ, Rao RP, Ojemann JG (2009) Classification of contralateral and ipsilateral finger movements for electrocorticographic brain–computer interfaces. Neurosurg Focus 27(1):E12Google Scholar
  39. 39.
    Seeber M, Scherer R, Wagner J, Solis-Escalante T, Müller-Putz GR (2015) High and low gamma eeg oscillations in central sensorimotor areas are conversely modulated during the human gait cycle. Neuroimage 112:318–326Google Scholar
  40. 40.
    Sim KS, Kiang KDT, You LZ (2016) Eeg controlled wheelchair. In: MATEC web of conferences, EDP sciences, vol 51Google Scholar
  41. 41.
    Soekadar SR, Witkowski M, Vitiello N, Birbaumer N (2015) An eeg/eog-based hybrid brain-neural computer interaction (bnci) system to control an exoskeleton for the paralyzed hand. Biomed Eng/Biomed Tech 60(3):199–205Google Scholar
  42. 42.
    Subasi A, Gursoy MI (2010) Eeg signal classification using pca, ica, lda and support vector machines. Expert Syst Appl 37(12):8659–8666Google Scholar
  43. 43.
    Szurhaj W, Bourriez JL, Kahane P, Chauvel P, Mauguière F, Derambure P (2005) Intracerebral study of gamma rhythm reactivity in the sensorimotor cortex. Eur J Neurosci 21(5):1223–1235Google Scholar
  44. 44.
    Theodoridis S, Pikrakis A, Koutroumbas K, Cavouras D (2010) Introduction to pattern recognition: a matlab approach. Academic Press, New YorkGoogle Scholar
  45. 45.
    Wolpaw JR, Birbaumer N, McFarland DJ, Pfurtscheller G, Vaughan TM (2002) Brain-computer interfaces for communication and control. Clin Neurophysiol 113(6):767–791Google Scholar
  46. 46.
    Zhang R, Li Y, Yan Y, Zhang H, Wu S, Yu T, Gu Z (2016) Control of a wheelchair in an indoor environment based on a brain-computer interface and automated navigation. IEEE Trans Neural Syst Rehabil Eng 24(1):128–139Google Scholar

Copyright information

© The Brazilian Society of Mechanical Sciences and Engineering 2019

Authors and Affiliations

  1. 1.Robotics Laboratory, Department of Mechanical EngineeringFederal University of Rio de JaneiroRio de JaneiroBrazil
  2. 2.Department of Civil EngineeringFederal University of Rio de JaneiroRio de JaneiroBrazil
  3. 3.Federal Center of Technological Education Celso Suckow da Fonseca CEFET/RJNova IguaçuBrazil
  4. 4.Laboratory of Cognitive Physiology, Institute of Biophysics Carlos Chagas FilhoFederal University of Rio de JaneiroRio de JaneiroBrazil
  5. 5.Rua Professor Rodolpho Paulo RoccoRio de JaneiroBrazil

Personalised recommendations