Heat transfer in stagnation-point flow of a Jeffrey fluid past a lubricated surface

  • Khalid Mahmood
  • Muhammad Noveel SadiqEmail author
  • Muhammad Sajid
  • Nasir Ali
Technical Paper


In this manuscript, heat transfer in flow of Jeffrey fluid past a lubricated surface near a stagnation point is considered. A shear-thinning (power-law) fluid is utilized for the lubrication purpose. The interfacial conditions are developed by applying the continuity of velocity and shear stress of Jeffrey and power-law fluids. Similarity solutions are obtained by selecting power-law index as 0.5. Approximate numerical results are achieved using Keller box scheme. Effects of involved parameters in the presence of lubrication are expressed by graphs and tables. It is found that the lubricant enhances the effects of the retardation parameter while opposes the ratio parameter effects. The temperature is reduced in the presence of the lubricant.


Power-law fluid Jeffrey fluid Interfacial conditions Stagnation-point flow Keller box method Heat transfer 

List of symbols


Flow rate


Fluid pressure


Thickness of lubrication layer

x, y

Rectangular coordinates

u, v

Velocity components of Jeffrey fluid in horizontal and vertical direction

U, V

Velocity components of power-law fluid in horizontal and vertical direction


Free stream velocity


Time relaxation-to-retardation ratio


Flow behavior index of power-law fluid


Consistency coefficient of power-law fluid


Viscosity of power-law fluid


Thermal diffusivity


Deborah number


Slip parameter


Prandtl number


The retardation parameter


  1. 1.
    Nallapuand S, Radha Krishnamacharya G (2013) Flow of Jeffrey fluid through narrow tubes. Int J Sci Eng Res 4:468–473Google Scholar
  2. 2.
    Narayana PVS, Babu DH (2016) Numerical study of MHD heat and mass transfer of a Jeffrey fluid over a stretching sheet with chemical reaction and thermal radiation. J Taiwan Inst Chem Eng 59:18–25CrossRefGoogle Scholar
  3. 3.
    Malik MY, Zehra I, Nadeem S (2012) Numerical treatment of Jeffrey fluid with pressure-dependent viscosity. Int J Numer Methods Fluids 68:196–209CrossRefGoogle Scholar
  4. 4.
    Farooq M, Gull N, Hayat T, Alsaedi A (2015) MHD flow of Jeffrey fluid with Newtonian heating. J Mech 93:1–11Google Scholar
  5. 5.
    Shehzad SA, Alsaadi FE, Monaquel SJ, Hayat T (2013) Soret and Dufour effects on the stagnation point flow of Jeffrey fluid with convective boundary condition. Eur Phys J Plus 86:433–441CrossRefGoogle Scholar
  6. 6.
    Hayat T, Awais M, Alsaedi A (2012) Newtonian heating and magnetohydrodynamic effects in flow of a Jeffrey fluid over a radially stretching. Int J Phys Sci 7:2838–2844Google Scholar
  7. 7.
    Hayat T, Asad S, Mustafa M, Alsaedi A (2015) MHD stagnation-point flow of Jeffrey fluid over a convectively heated stretching sheet. Comput Fluids 108:179–185MathSciNetCrossRefGoogle Scholar
  8. 8.
    Hayat T, Sajjad R, Asghar S (2010) Series solution for MHD channel flow of a Jeffery fluid. Commun Nonlinear Sci Numer Simul 15:2400–2406MathSciNetCrossRefGoogle Scholar
  9. 9.
    Hayat T, Awais M, Obaidat S (2012) Three-dimensional flow of a Jeffery fluid over a linearly stretching sheet. Commun Nonlinear Sci Numer Simul 17:699–707MathSciNetCrossRefGoogle Scholar
  10. 10.
    Raju CSK, Sandeep N, Reddy MG (2016) Effect of nonlinear thermal radiation on 3D Jeffrey fluid flow in the presence of homogeneous-heterogeneous reactions. Int J Eng Res Afr 21:52–68CrossRefGoogle Scholar
  11. 11.
    Reddy MG, Makinde OD (2016) Magnetohydrodynamic peristaltic transport of Jeffrey nanofluid in an asymmetric channel. J Mol Liq 223:1242–1248CrossRefGoogle Scholar
  12. 12.
    Reddy MG, Reddy KV, Makinde OD (2017) Heat transfer on MHD peristaltic rotating flow of a Jeffrey fluid in an asymmetric channel. Int J Appl Comput Math 3:3201–3227MathSciNetCrossRefGoogle Scholar
  13. 13.
    Khan SU, Ali N, Abbas Z (2015) Hydromagnetic flow and heat transfer over a porous oscillating stretching surface in a viscoelastic fluid with porous medium. PLoS ONE 10:e0144299. CrossRefGoogle Scholar
  14. 14.
    Reddy MG (2018) Cattaneo–Christov heat flux effect on hydromagnetic radiative Oldroyd-B liquid flow across a cone/wedge in the presence of cross-diffusion. Eur Phys J Plus 133:2CrossRefGoogle Scholar
  15. 15.
    Reddy MG (2017) Velocity and thermal slip effects on MHD third order blood flow in an irregular channel though a porous medium with homogeneous/heterogeneous reactions. Nonlinear Eng 6:167–178Google Scholar
  16. 16.
    Reddy MG (2016) Heat and mass transfer on magnetohydrodynamic peristaltic flow in a porous medium with partial slip. Alex Eng J 55:1225–1234CrossRefGoogle Scholar
  17. 17.
    Sandeep N, Reddy MG (2017) Heat transfer of nonlinear radiative magnetohydrodynamic Cu–water nanofluid flow over two different geometries. J Mol Liq 225:87–94CrossRefGoogle Scholar
  18. 18.
    Reddy MG, Sandeep N (2016) Heat and mass transfer in radiative MHD Carreau fluid with cross diffusion. Ain Shams Eng J. CrossRefGoogle Scholar
  19. 19.
    Reddy KV, Makinde OD, Reddy MG (2018) Thermal analysis of MHD electro-osmotic peristaltic pumping of Casson fluid through a rotating asymmetric micro-channel. Ind J Phys 11:1439–1448CrossRefGoogle Scholar
  20. 20.
    Reddy MG, Rani MS, Prasannakumara C (2018) Non-linear radiation and chemical reaction impacts on hydromagnetic particle suspension flow in non-Newtonian fluids. Int J Chem React Eng. CrossRefGoogle Scholar
  21. 21.
    Hiemenz K (1911) Die Grenzschicht an einem in den gleichformingen Flussigkeitsstrom eingetauchten graden Kreiszylinder. Dinglers Polytech J 326:321–324Google Scholar
  22. 22.
    Stuart JT (1959) The viscous flow near a stagnation-point when the external flow has uniform vorticity. J Aerosp Sci 26:124–125CrossRefGoogle Scholar
  23. 23.
    Chiam TC (1994) Stagnation-point flow towards a stretching plate. J Phys Soc Jpn 63:2443–2444CrossRefGoogle Scholar
  24. 24.
    Wang CY (2008) Stagnation flow towards a shrinking sheet. Int J Nonlinear Mech 43:377–382CrossRefGoogle Scholar
  25. 25.
    Frossling N (1940) Verdunstung, Warmeubertragung und Geschwindigkeitsverteilung bei zweidimensionaler und rotations symmetrischer laminarer Grenzschicht-stromung. Lunds Univ Arsskr NF Avd 2(4):35MathSciNetzbMATHGoogle Scholar
  26. 26.
    Homann F (1936) Der Einfluss grosser Zahigkeit bei der Stromung um den Zylinder und um die Kugel. Z Angew Math Mech (ZAMM) 16:153–164CrossRefGoogle Scholar
  27. 27.
    Howarth L (1951) The boundary layer in three-dimensional flow. Part II: the flow near a stagnation-point. Philos Mag VII 42:1433–1440MathSciNetCrossRefGoogle Scholar
  28. 28.
    Davey A (1961) Boundary layer flow at a saddle point of attachment. J Fluid Mech 10:593–610MathSciNetCrossRefGoogle Scholar
  29. 29.
    Labropulu F, Xu X, Chinichian M (2003) Unsteady stagnation-point flow of a non-Newtonian second grade fluid. Int J Math Math Sci 60:3797–3807MathSciNetCrossRefGoogle Scholar
  30. 30.
    Sandeep N, Sulochana C, Isaaclare A (2016) Stagnation-point flow of a Jeffrey nanofluid over a stretching surface with induced magnetic field and chemical reaction. Int J Eng Res Afr 20:93–111CrossRefGoogle Scholar
  31. 31.
    Wang CY (2003) Stagnation flows with slip: exact solution of the Navier–Stokes equations. Z Angew Math Phys 54:184–189MathSciNetCrossRefGoogle Scholar
  32. 32.
    Labropulu F, Li D (2008) Stagnation-point flow of a second-grade fluid with slip. Int J Non-Linear Mech 43:941–947CrossRefGoogle Scholar
  33. 33.
    Blyth MG, Pozrikidis C (2005) Stagnation-point flow against a liquid film on a plane wall. Acta Mech 180:203–219CrossRefGoogle Scholar
  34. 34.
    Santra B, Dandapat BS, Andersson HI (2007) Axisymmetric stagnation-point flow over a lubricated surface. Acta Mech 194:1–10CrossRefGoogle Scholar
  35. 35.
    Sajid M, Mahmood K, Abbas Z (2012) Axisymmetric stagnation-point flow with a general slip boundary condition over a lubricated surface. Chin Phys Lett 29:024702CrossRefGoogle Scholar
  36. 36.
    Thompson PA, Troian SM (1997) A general boundary condition for liquid flow at solid surfaces. Nature 389:360–362CrossRefGoogle Scholar
  37. 37.
    Sajid M, Javed T, Abbas Z, Ali N (2013) Stagnation-point flow of a viscoelastic fluid over a lubricated surface. Int J Nonlinear Sci Numer Simul 14:285–290MathSciNetCrossRefGoogle Scholar
  38. 38.
    Mahmood K, Sajid M, Ali N (2016) Non-orthogonal stagnation-point flow of a second-grade fluid past a lubricated surface. ZNA 71:273–280Google Scholar
  39. 39.
    Mahmood K, Sajid M, Ali N, Javed T (2016) Slip flow of a second-grade fluid past a lubricated rotating disc. Int J Phys Sci 11:96–103CrossRefGoogle Scholar
  40. 40.
    Mahmood K, Sajid M, Ali N, Javed T (2016) Heat transfer analysis in the time-dependent slip flow over a lubricated surface. Eng Sci Technol Int J 19:1949–1957CrossRefGoogle Scholar
  41. 41.
    Mahmood K, Sajid M, Ali N, Javed T (2016) Heat transfer analysis in the time-dependent axisymmetric stagnation point flow over a lubricated surface. Therm Sci. CrossRefGoogle Scholar
  42. 42.
    Mahmood K, Sajid M, Ali N, Sadiq MN (2017) Effects of lubricated surface in the oblique stagnation-point flow of a micropolar fluid. Eur Phys J Plus 132:297CrossRefGoogle Scholar
  43. 43.
    Mahmood K, Sajid M, Sadiq MN, Ali N (2018) Effects of lubrication on the steady oblique stagnation-point flow of a couple stress fluids. Phys Astron Int J 2:389–397Google Scholar
  44. 44.
    Keller HB, Cebeci T (1972) Accurate numerical methods for boundary layer flows II: two dimensional turbulent flows. AIAA J 10:1193–1199MathSciNetCrossRefGoogle Scholar
  45. 45.
    Keller HB (1970) A new difference scheme for parabolic problems. In: Bramble J (ed) Numerical solution of partial differential equations, vol 2. Acad., New YorkGoogle Scholar
  46. 46.
    Ahmad K, Nazar R (2010) Unsteady MHD mixed convection stagnation-point flow of a viscoelastic fluid on a vertical surface. JQMA 6:105–117Google Scholar
  47. 47.
    Sarif NM, Salleh MZ, Nazar R (2013) Numerical solution of flow and heat transfer over a stretching sheet with Newtonian heating using the Keller-box method. Proc Eng 53:542–554CrossRefGoogle Scholar
  48. 48.
    Mahmood K, Sajid M, Ali N, Labropulu F (2017) Non-orthogonal stagnation point flow over a lubricated surface. J App Math Technol Phys 58:224–231CrossRefGoogle Scholar

Copyright information

© The Brazilian Society of Mechanical Sciences and Engineering 2019

Authors and Affiliations

  • Khalid Mahmood
    • 1
  • Muhammad Noveel Sadiq
    • 1
    Email author
  • Muhammad Sajid
    • 1
  • Nasir Ali
    • 1
  1. 1.Department of Mathematics and StatisticsInternational Islamic UniversityIslamabadPakistan

Personalised recommendations