Investigation of the vibrational characteristics of single-walled carbon nanotube/polymer nanocomposites using finite element method

  • R. Ansari
  • S. RouhiEmail author
  • A. Nikkar
Technical Paper


The vibrational behavior of polymer matrix reinforced by single-walled carbon nanotubes is investigated here. To this end, the finite element method is used. The effects of nanotube geometrical parameters and volume fraction on the natural frequency of the nanocomposites are explored. It is shown that the influence of the nanotube chirality on the vibrational behavior of the nanocomposite is not significant. However, increasing the diameter has an inverse effect on the natural frequency of the nanocomposites. Investigating the effect of volume fraction, it is shown that the nanocomposites with larger volume fractions possess larger frequencies. However, the influence of the volume fraction on the vibrational behavior of the nanocomposites diminishes for long single-walled carbon nanotubes.


Finite element method Vibrational behavior Single-walled carbon nanotube Polymer matrix Nanocomposites 


Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interest.


  1. 1.
    Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58CrossRefGoogle Scholar
  2. 2.
    Salvetat-Delmotte JP, Rubio A (2002) Mechanical properties of carbon nanotubes: a fiber digest for beginners. Carbon 40:1729–1734CrossRefGoogle Scholar
  3. 3.
    Endo M, Hayashi T, Kim YA, Terrones M, Dresselhaus MS (2004) Applications of carbon nanotubes in the twenty-first century. Phil Trans R Soc Lond A 362:2223–2238CrossRefGoogle Scholar
  4. 4.
    Fidelus JD, Wiesel E, Gojny FH, Schulte K, Wagner HD (2005) Thermo-mechanical properties of randomly oriented carbon/epoxy nanocomposites. Compos A Appl Sci Manuf 36:1555–1561CrossRefGoogle Scholar
  5. 5.
    Bonnet P, Sireude D, Garnier B, Chauvet O (2007) Thermal properties and percolation in carbon nanotube-polymer composites. Appl Phys Lett 91:2019–2030CrossRefGoogle Scholar
  6. 6.
    Han Y, Elliott J (2007) Molecular dynamics simulations of the elastic properties of polymer/carbon nanotube composites. Comput Mater Sci 39:315–323CrossRefGoogle Scholar
  7. 7.
    Ajayan PM, Schadler LS, Giannaris C, Rubio A (2000) Single-walled carbon nanotube-polymer composites: strength and weakness. Adv Mater 12:750–753CrossRefGoogle Scholar
  8. 8.
    Gong X, Liu J, Baskaran S, Voise RD, Young JS (2000) Surfactant-assisted processing of carbon nanotube/polymer composites. Chem Mater 12:1049–1052CrossRefGoogle Scholar
  9. 9.
    Haggenmueller R, Gommans HH, Rinzler AG, Fischer JE, Winey KI (2000) Aligned single-wall carbon nanotubes in composites by melt processing methods. Chem Phys Lett 330:219–225CrossRefGoogle Scholar
  10. 10.
    Qian D, Dickey EC, Andrews R, Rantell T (2000) Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites. Appl Phys Lett 76:2868–2870CrossRefGoogle Scholar
  11. 11.
    Shaffer MSP, Windle AH (1999) Fabrication and characterization of carbon nanotube/poly (vinyl alcohol) composites. Adv Mater 11:937–941CrossRefGoogle Scholar
  12. 12.
    Frankland SJV, Harik VM, Odegard GM, Brenner DW, Gates TS (2003) The stress-strain behavior of polymer-nanotube composites from molecular dynamics simulation. Compos Sci Technol 63:1655–1661CrossRefGoogle Scholar
  13. 13.
    Zhu R, Pan E, Roy AK (2007) Molecular dynamics study of the stress-strain behavior of carbon-nanotube reinforced Epon 862 composites. Mater Sci Eng A 447:51–57CrossRefGoogle Scholar
  14. 14.
    Mokashi VV, Qian D, Liu Y (2007) A study on the tensile response and fracture in carbon nanotube-based composites using molecular mechanics. Compos Sci Technol 67:530–540CrossRefGoogle Scholar
  15. 15.
    Tsai JL, Tzeng SH, Chiu YT (2010) Characterizing elastic properties of carbon nanotubes/polyimide nanocomposites using multi-scale simulation. Compos B Eng 41:106–115CrossRefGoogle Scholar
  16. 16.
    Yang S, Yu S, Kyoung W, Han DS, Cho M (2012) Multiscale modeling of size-dependent elastic properties of carbon nanotube/polymer nanocomposites with interfacial imperfections. Polymer 53:623–633CrossRefGoogle Scholar
  17. 17.
    Yang S, Yu S, Ryu J, Cho JM, Kyoung W, Han DS, Cho M (2013) Nonlinear multiscale modeling approach to characterize elastoplastic behavior of CNT/polymer nanocomposites considering the interphase and interfacial imperfection. Int J Plast 41:124–146CrossRefGoogle Scholar
  18. 18.
    Bohlén M, Bolton K (2013) Molecular dynamics studies of the influence of single wall carbon nanotubes on the mechanical properties of Poly (vinylidene fluoride). Comput Mater Sci 68:73–80CrossRefGoogle Scholar
  19. 19.
    Rouhi S, Alizadeh Y, Ansari R (2014) Molecular dynamics simulations of the single-walled carbon nanotubes/poly (phenylacetylene) nanocomposites. Superlattices Microstruct 72:204–218CrossRefGoogle Scholar
  20. 20.
    Rouhi S, Alizadeh Y, Ansari R (2016) On the elastic properties of single-walled carbon nanotubes/poly (ethylene oxide) nanocomposites using molecular dynamics simulations. J Mol Model 22:41CrossRefGoogle Scholar
  21. 21.
    Rouhi S, Alizadeh Y, Ansari R, Aryayi M (2015) Using molecular dynamics simulations and finite element method to study the mechanical properties of nanotube reinforced polyethylene and polyketone. Modern Phys Lett B 29:1550155CrossRefGoogle Scholar
  22. 22.
    Georgantzinos SK (2017) A new finite element for an efficient mechanical analysis of graphene structures using computer aided design/computer aided engineering techniques. J Comput Theor Nanosci 14:5347–5354CrossRefGoogle Scholar
  23. 23.
    Genoese A, Genoese A, Rizzi NL, Salerno G (2017) On the derivation of the elastic properties of lattice nanostructures: the case of graphene sheets. Compos B Eng 115:316–329CrossRefGoogle Scholar
  24. 24.
    Giannopoulos GI, Tsiros AP, Georgantzinos SK (2013) Prediction of elastic mechanical behavior and stability of single-walled carbon nanotubes using bar elements. Mech Adv Mater Struct 20:730–741CrossRefGoogle Scholar
  25. 25.
    Li C, Chou TW (2006) Multiscale modeling of compressive behavior of carbon nanotube/polymer composites. Compos Sci Technol 66:2409–2414CrossRefGoogle Scholar
  26. 26.
    Georgantzinos SK, Giannopoulos GI, Anifantis NK (2009) Investigation of stress–strain behavior of single walled carbon nanotube/rubber composites by a multi-scale finite element method. Theor Appl Fract Mech 52:158–164CrossRefGoogle Scholar
  27. 27.
    Giannopoulos GI, Georgantzinos SK, Anifantis NK (2010) A semi-continuum finite element approach to evaluate the Young’s modulus of single-walled carbon nanotube reinforced composites. Compos B Eng 41:594–601CrossRefGoogle Scholar
  28. 28.
    Shokrieh MM, Rafiee R (2010) On the tensile behavior of an embedded carbon nanotube in polymer matrix with non-bonded interphase region. Compos Struct 92:647–652CrossRefGoogle Scholar
  29. 29.
    Shokrieh MM, Rafiee R (2010) Investigation of nanotube length effect on the reinforcement efficiency in carbon nanotube based composites. Compos Struct 92:2415–2420CrossRefGoogle Scholar
  30. 30.
    Wernik JM, Meguid SA (2009) Coupling atomistics and continuum in solids: status, prospects, and challenges. Int J Mech Mater Design 5:79–110CrossRefGoogle Scholar
  31. 31.
    Wernik JM, Meguid SA (2011) Multiscale modeling of the nonlinear response of nano-reinforced polymers. Acta Mech 217:1–16CrossRefGoogle Scholar
  32. 32.
    Meguid SA, Wernik JM, Cheng ZQ (2010) Atomistic-based continuum representation of the effective properties of nano-reinforced epoxies. Int J Solids Struct 47:1723–1736CrossRefGoogle Scholar
  33. 33.
    Georgantzinos SK, Giannopoulos GI, Anifantis NK (2010) Effective young’s modulus of carbon nanotube composites: from multi-scale finite element predictions to an analytical rule. J Comput Theor Nanosci 7:1436–1442CrossRefGoogle Scholar
  34. 34.
    Karimi M, Ghajar R, Montazeri A (2018) A novel interface-treated micromechanics approach for accurate and efficient modeling of CNT/polymer composites. Compos Struct 201:528–539CrossRefGoogle Scholar
  35. 35.
    Ansari R, Rouhi S (2010) Atomistic finite element model for axial buckling of single-walled carbon nanotubes. Physica E 43:58–69CrossRefGoogle Scholar
  36. 36.
    Rouhi S, Ansari R (2012) Atomistic finite element model for axial buckling and vibration analysis of single-layered graphene sheets. Physica E 44:764–772CrossRefGoogle Scholar
  37. 37.
    Ansari R, Rouhi S, Aryayi M (2013) Nanoscale finite element models for vibrations of single-walled carbon nanotubes: atomistic versus continuum. Appl Math Mech Engl Ed 34:1187–1200MathSciNetCrossRefGoogle Scholar
  38. 38.
    Ansari R, Rouhi S, Aryayi M (2016) On the vibration of double-walled carbon nanotubes using molecular structural and cylindrical shell models. Int J Mod Phys B 30:1650007CrossRefGoogle Scholar
  39. 39.
    Fereidoon A, Rajabpour M, Hemmatian H (2013) Fracture analysis of epoxy/SWCNT nanocomposite based on global–local finite element model. Compos B Eng 54:400–408CrossRefGoogle Scholar
  40. 40.
    Zuberi MJS, Esat V (2015) Investigating the mechanical properties of single walled carbon nanotube reinforced epoxy composite through finite element modelling. Compos B Eng 71:1–9CrossRefGoogle Scholar
  41. 41.
    Li C, Chou TW (2004) Vibrational behaviors of multiwalled-carbon-nanotube-based nanomechanical resonators. Appl Phys Lett 84:121–123CrossRefGoogle Scholar

Copyright information

© The Brazilian Society of Mechanical Sciences and Engineering 2019

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringUniversity of GuilanRashtIran
  2. 2.Young Researchers and Elite Club, Langarud BranchIslamic Azad UniversityLangarudIran

Personalised recommendations