Advertisement

Finite element investigation of the elastic modulus of concentric boron nitride and carbon multi-walled nanotubes

  • S. Rouhi
  • A. Nikkar
  • R. Ansari
Technical Paper
  • 40 Downloads

Abstract

The finite element method is used here to study the elastic properties of concentric boron nitride and carbon multi-walled nanotubes. Beam and spring elements are, respectively, employed to model the covalent bonds between atoms and nonbonding van der Waals interactions between atoms located on different walls. The double-walled and triple-walled nanotubes with different arrangements of boron nitride and carbon nanotubes are considered. It is shown that the elastic modulus of the concentric multi-walled BN and C nanotubes increases by increasing the ratio of nanotube length to its diameter (aspect ratio). In addition, the effect of aspect ratio on the elastic modulus of the armchair nanotubes is larger than that on the elastic modulus of the armchair nanotubes. Comparing the elastic modulus of the double-walled and triple-walled nanotubes, it is observed that the effect of number of walls on the elastic modulus of the concentric boron nitride and carbon multi-walled nanotube is negligible.

Keywords

Finite element method Elastic modulus Concentric boron nitride and carbon multi-walled nanotube 

References

  1. 1.
    Iijima S, Brabec C, Maiti A, Bernholc J (1996) Structural flexibility of carbon nanotubes. J Chem Phys 104:2089CrossRefGoogle Scholar
  2. 2.
    Ansari R, Rouhi S, Shahnazari A (2018) Investigation of the vibrational characteristics of double-walled carbon nanotubes/double-layered graphene sheets using the finite element method. Mech Adv Mater Struct 25:253–265CrossRefGoogle Scholar
  3. 3.
    Hernández E, Goze C, Bernier P, Rubio A (1999) Elastic properties of single-wall nanotubes. Appl Phys A 68:287–292Google Scholar
  4. 4.
    Avouris P, Hertel T, Martel R, Schmidt T, Shea HR, Walkup RE (1999) Carbon nanotubes: nanomechanics, manipulation, and electronic devices. Appl Surf Sci 141:201–209CrossRefGoogle Scholar
  5. 5.
    Ruoff SR, Lorents DC (1995) Mechanical and thermal properties of carbon nanotubes. Carbon 33:925–930CrossRefGoogle Scholar
  6. 6.
    Treacy MM, Ebbesen TW, Gibson JM (1996) Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 381:678CrossRefGoogle Scholar
  7. 7.
    Gao G, Cagin T, Goddard WA III (1998) Energetics, structure, mechanical and vibrational properties of single-walled carbon nanotubes. Nanotechnology 9:184CrossRefGoogle Scholar
  8. 8.
    Salvetat JP, Bonard JM, Thomson NH, Kulik AJ, Forro L, Benoit W, Zuppiroli L (1999) Mechanical properties of carbon nanotubes. Appl Phys A 69:255–260CrossRefGoogle Scholar
  9. 9.
    Yu MF, Files BS, Arepalli S, Ruoff RS (2000) Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys Rev Lett 84:5552CrossRefGoogle Scholar
  10. 10.
    Li C, Chou TW (2003) A structural mechanics approach for the analysis of carbon nanotubes. Int J Solids Struct 40:2487–2499zbMATHCrossRefGoogle Scholar
  11. 11.
    Li C, Chou TW (2003) Elastic moduli of multi-walled carbon nanotubes and the effect of van der Waals forces. Compos Sci Technol 63:1517–1524CrossRefGoogle Scholar
  12. 12.
    Li C, Chou TW (2004) Vibrational behaviors of multiwalled-carbon-nanotube-based nanomechanical resonators. Appl Phys Lett 84:121–123CrossRefGoogle Scholar
  13. 13.
    Tserpes KI, Papanikos P (2005) Finite element modeling of single-walled carbon nanotubes. Compos B Eng 36:468–477CrossRefGoogle Scholar
  14. 14.
    Sammalkorpi M, Krasheninnikov A, Kuronen A, Nordlund K, Kaski K (2004) Mechanical properties of carbon nanotubes with vacancies and related defects. Phys Rev B 70:245416CrossRefGoogle Scholar
  15. 15.
    Pantano A, Parks DM, Boyce MC (2004) Mechanics of deformation of single-and multi-wall carbon nanotubes. J Mech Phys Solids 52:789–821zbMATHCrossRefGoogle Scholar
  16. 16.
    Cao G, Chen X (2006) Buckling of single-walled carbon nanotubes upon bending: molecular dynamics simulations and finite element method. Phys Rev B 73:155435CrossRefGoogle Scholar
  17. 17.
    Georgantzinos SK, Anifantis NK (2009) Vibration analysis of multi-walled carbon nanotubes using a spring–mass based finite element model. Comput Mater Sci 47:168–177CrossRefGoogle Scholar
  18. 18.
    Sedghamiz E, Jamalizadeh E, Hosseini SMA, Sedghamiz T, Zahedi E (2014) Molecular dynamics simulation of boron nitride nanotube as a drug carrier. Arab J Sci Eng 39:6737–6742CrossRefGoogle Scholar
  19. 19.
    Khatti Z, Hashemianzadeh SM (2016) Boron nitride nanotube as a delivery system for platinum drugs: drug encapsulation and diffusion coefficient prediction. Eur J Pharm Sci 88:291–297CrossRefGoogle Scholar
  20. 20.
    Solimannejad M, Noormohammadbeigi M (2017) Boron nitride nanotube (BNNT) as a sensor of hydroperoxyl radical (HO2): a DFT study. J Iran Chem Soc 14:471–476CrossRefGoogle Scholar
  21. 21.
    Panchal MB, Upadhyay SH (2014) Boron nitride nanotube-based biosensor for acetone detection: molecular structural mechanics-based simulation. Mol Simul 40:1035–1042CrossRefGoogle Scholar
  22. 22.
    Barzegar HR, Pham T, Talyzin AV, Zettl A (2016) Synthesis of graphene nanoribbons inside boron nitride nanotubes. Phys Status Solidi B 253:2377–2379CrossRefGoogle Scholar
  23. 23.
    Chen X, Zhang L, Park C, Fay CC, Wang X, Ke Ch (2015) Mechanical strength of boron nitride nanotube–polymer interfaces. Appl Phys Lett 107:253105CrossRefGoogle Scholar
  24. 24.
    Zhang YQ, Liu YJ, Liu YL, Zhao JX (2014) Boosting sensitivity of boron nitride nanotube (BNNT) to nitrogen dioxide by Fe encapsulation. J Mol Graph Model 51:1–6CrossRefGoogle Scholar
  25. 25.
    Deng ZY, Zhang JM, Xu KW (2016) Adsorption of SO2 molecule on doped (8, 0) boron nitride nanotube: a first-principles study. Phys E Low Dimens Syst Nanostruct 76:47–51CrossRefGoogle Scholar
  26. 26.
    Shin H, Guan J, Zgierski MZ, Kim KS, Kingston ChT, Simard B (2015) Covalent functionalization of boron nitride nanotubes via reduction chemistry. ACS Nano 9:12573–12582CrossRefGoogle Scholar
  27. 27.
    Gao Z, Zhi C, Bando Y, Golberg D, Serizawa T (2014) Noncovalent functionalization of boron nitride nanotubes inaqueous media opens application roads in nanobiomedicine. Nanobiomedicine 1:7CrossRefGoogle Scholar
  28. 28.
    Rouhi S (2016) Molecular dynamics simulation of the adsorption of polymer chains on CNTs, BNNTs and GaNNTs. Fibers Polym 17:333–342CrossRefGoogle Scholar
  29. 29.
    Esrafili MD, Behzadi H (2013) A DFT study on carbon-doping at different sites of (8, 0) boron nitride nanotube. Struct Chem 24:573–581CrossRefGoogle Scholar
  30. 30.
    Dhungana KB, Pati R (2014) Fluorinated boron nitride nanotube quantum dots: a spin filter. J Am Chem Soc 136:11494–11498CrossRefGoogle Scholar
  31. 31.
    Mercan K, Civalek Ö (2016) DSC method for buckling analysis of boron nitride nanotube (BNNT) surrounded by an elastic matrix. Compos Struct 143:300–309CrossRefGoogle Scholar
  32. 32.
    Machado LD, Ozden S, Tiwary CS, Autreto PAS, Vajtai R, Barrera EV, Galvao DS, Ajayan PM (2016) The structural and dynamical aspects of boron nitride nanotubes under high velocity impacts. Phys Chem Chem Phys 18:14776–14781CrossRefGoogle Scholar
  33. 33.
    Chowdhury R, Wang CY, Adhikari S, Scarpa F (2010) Vibration and symmetry-breaking of boron nitride nanotubes. Nanotechnology 21:365702CrossRefGoogle Scholar
  34. 34.
    Ansari R, Rouhi S, Mirnezhad M, Aryayi M (2015) Stability characteristics of single-walled boron nitride nanotubes. Arch Civ Mech Eng 15:162–170CrossRefGoogle Scholar
  35. 35.
    Yan JW, Liew KM (2015) Predicting elastic properties of single-walled boron nitride nanotubes and nanocones using an atomistic-continuum approach. Compos Struct 125:489–498CrossRefGoogle Scholar
  36. 36.
    Tao J, Xu G, Sun Y (2015) Elastic properties of boron-nitride nanotubes through an atomic simulation method. Math Probl Eng 2015:240547Google Scholar
  37. 37.
    Ansari R, Faghihnasiri M, Malakpour S, Sahmani S (2015) A DFT study of elastic and structural properties of (3,3) boron nitride nanotube under external electric field. Superlattices Microstruct 82:90–102CrossRefGoogle Scholar
  38. 38.
    Kumar D, Verma V, Dharamvir K, Bhatti HS (2015) Elastic moduli of boron nitride, aluminium nitride and gallium nitride nanotubes using second generation reactive empirical bond order potential. Multidiscip Model Mater Struct 11:2–15CrossRefGoogle Scholar
  39. 39.
    Rouhi S, Ansari R, Shahnazari A (2016) Vibrational characteristics of single-layered boron nitride nanosheet/single-walled boron nitride nanotube junctions using finite element modeling. Mater Res Express 3:125027CrossRefGoogle Scholar
  40. 40.
    Jing L, Tay RY, Li H, Tsang SH, Huang J, Tan D, Zhang B, Teo EHT, Tok AIY (2016) Coaxial carbon@boron nitride nanotube arrays with enhanced thermal stability and compressive mechanical properties. Nanoscale 8:11114–11122CrossRefGoogle Scholar
  41. 41.
    Jing L, Samani MK, Liu B, Li H, Tay RY, Tsang SH, Cometto O, Nylander A, Liu J, Teo EHT, Tok AIY (2017) Thermal conductivity enhancement of coaxial carbon@boron nitride nanotube arrays. ACS Appl Mater Interfaces 9:14555–14560CrossRefGoogle Scholar
  42. 42.
    Ansari R, Rouhi S, Nikkar A (2017) Finite element investigation of the vibrational behavior of concentric multi-walled boron nitride and carbon nanotubes. Int J Mod Phys B 31:1750018CrossRefGoogle Scholar
  43. 43.
    Odegard GM, Gates TS, Nicholson LM, Wise KE (2002) Equivalent-continuum modeling of nano-structured materials. Compos Sci Technol 62:1869–1880CrossRefGoogle Scholar
  44. 44.
    Gelin BR (1994) Molecular modeling of polymer structures and properties. Carl HanserVerlag, MunichGoogle Scholar
  45. 45.
    Leach AR (1996) Molecular modeling principles and applications. Addison Wesley, LondonGoogle Scholar
  46. 46.
    Ansari R, Rouhi S (2010) Atomistic finite element model for axial buckling of single-walled carbon nanotubes. Physica E 43:58–69CrossRefGoogle Scholar
  47. 47.
    Rouhi S, Ansari R (2012) Atomistic finite element model for axial buckling and vibration analysis of single-layered graphene sheets. Physica E 44:764–772CrossRefGoogle Scholar
  48. 48.
    Ansari R, Rouhi S, Aryayi M (2016) On the vibration of double-walled carbon nanotubes using molecular structural and cylindrical shell models. Int J Mod Phys B 30:1650007CrossRefGoogle Scholar
  49. 49.
    Allen MP, Tildesley DJ (2017) Computer simulation of liquids. Oxford University Press, OxfordzbMATHCrossRefGoogle Scholar
  50. 50.
    Hilder TA, Yang R, Ganesh V, Gordon D, Bliznyuk A, Rendell AP, Chung S-H (2010) Validity of current force fields for simulations on boron nitride nanotubes. Micro Nano Lett 5:150–156CrossRefGoogle Scholar
  51. 51.
    Eberhardt O, Wallmersperger T (2015) Energy consistent modified molecular structural mechanics model for the determination of the elastic properties of single wall carbon nanotubes. Carbon 95:166–180CrossRefGoogle Scholar
  52. 52.
    Dresselhaus MS, Dresselhaus G, Saito R (1995) Physics of carbon nanotubes. Carbon 33:883CrossRefGoogle Scholar
  53. 53.
    Chen Y, Chadderton LT, Gerald JF, Williams JS (1999) A solid-state process for formation of boron nitride nanotubes. Appl Phys Lett 74:2960–2962CrossRefGoogle Scholar
  54. 54.
    Santosh M, Maiti PK, Sood AK (2009) Elastic properties of boron nitride nanotubes and their comparison with carbon nanotubes. J Nanosci Nanotechnol 9:5425–5430CrossRefGoogle Scholar
  55. 55.
    Chopra NG, Zettl A (1998) Measurement of the elastic modulus of a multi-wall boron nitride nanotube. Solid State Commun 105:297–300CrossRefGoogle Scholar
  56. 56.
    Wei X, Wang MS, Bando Y, Golberg D (2010) Tensile tests on individual multi-walled boron nitride nanotubes. Adv Mater 22:4895–4899CrossRefGoogle Scholar
  57. 57.
    Kudin KN, Scuseria GE, Yakobson BI (2001) C2F, BN, and C nanoshell elasticity from ab initio computations. Phys Rev B 64:235406CrossRefGoogle Scholar
  58. 58.
    Chang T, Gao H (2003) Size-dependent elastic properties of a single-walled carbon nanotube via a molecular mechanics model. J Mech Phys Solids 51:1059–1074zbMATHCrossRefGoogle Scholar
  59. 59.
    Wei X, Chen Q, Peng LM, Cui R, Li Y (2009) Tensile loading of double-walled and triple-walled carbon nanotubes and their mechanical properties. J Phys Chem C 113:17002–17005CrossRefGoogle Scholar

Copyright information

© The Brazilian Society of Mechanical Sciences and Engineering 2018

Authors and Affiliations

  1. 1.Young Researchers and Elite Club, Langarud BranchIslamic Azad UniversityLangarudIran
  2. 2.Department of Mechanical EngineeringUniversity of GuilanRashtIran

Personalised recommendations