On the numerical investigation of size and surface effects on nonlinear dynamics of a nanoresonator under electrostatic actuation

  • Sasan Rahmanian
  • Mohammad-Reza Ghazavi
  • Shahrokh Hosseini-HashemiEmail author
Technical Paper


This study aims to investigate the influences of nanostructure parameter and surface elasticity parameters on the nonlinear vibration of a nanoelectromechanical system under double-sided electrostatic actuation. For this, the effects of size dependency and surface energy are modeled through applying the consistent couple-stress theory together with the Gurtin–Murdoch elasticity theory. Taking into account the midplane stretching effect for doubly clamped boundary conditions, the nonlinear strain–displacement relationship is considered based on the Euler–Bernoulli beam assumption. Hamilton’s principle is utilized in order to establish the governing differential motion’s equation, and reduced-order model is obtained through implementing Galerkin’s procedure. Bifurcation diagrams are plotted to capture the steady-state response of the system with varying the nondimensional parameter, the ratio of AC to DC voltage amplitude. The influences of the length-scale parameter, surface elasticity modulus and density, and residual surface stress on the system dynamic response have been explored. The results reveal that the pull-in excitation frequency is highly influenced by these parameters, and also the interval length of the bifurcation parameter corresponding to the periodic and chaotic motions is extremely shifted by the amount of couple-stress and residual surface stress parameters.


Size-dependent NEMS Surface effects Bifurcation Chaos 


  1. 1.
    Haque M, Saif MA (2002) Mechanical behavior of 30–50 nm thick aluminum films under uniaxial tension. Scr Mater 47(12):863–867CrossRefGoogle Scholar
  2. 2.
    Chang T, Gao H (2003) Size-dependent elastic properties of a single-walled carbon nanotube via a molecular mechanics model. J Mech Phys Solids 51(6):1059–1074zbMATHCrossRefGoogle Scholar
  3. 3.
    Aifantis EC (1999) Strain gradient interpretation of size effects. In: Bažant ZP, Rajapakse YDS (eds) Fracture scaling. Springer, Dordrecht, pp 299–314. CrossRefGoogle Scholar
  4. 4.
    Nikpourian A, Ghazavi MR, Azizi S (2018) On the nonlinear dynamics of a piezoelectrically tuned micro-resonator based on non-classical elasticity theories. Int J Mech Mater Des 14(1):1–19CrossRefGoogle Scholar
  5. 5.
    Karimipour I, Beni YT, Koochi A, Abadyan M (2016) Using couple stress theory for modeling the size-dependent instability of double-sided beam-type nanoactuators in the presence of Casimir force. J Braz Soc Mech Sci Eng 38(6):1779–1795CrossRefGoogle Scholar
  6. 6.
    Bornassi S, Haddadpour H (2017) Nonlocal vibration and pull-in instability analysis of electrostatic carbon-nanotube based NEMS devices. Sens Actuators A 266:185–196CrossRefGoogle Scholar
  7. 7.
    Li L, Tang H, Hu Y (2018) Size-dependent nonlinear vibration of beam-type porous materials with an initial geometrical curvature. Compos Struct 184:1177–1188CrossRefGoogle Scholar
  8. 8.
    Keivani M, Koochi A, Kanani A, Navazi HM, Abadyan M (2017) Modeling the coupled effects of surface layer and size effect on the static and dynamic instability of narrow nano-bridge structure. J Braz Soc Mech Sci Eng 39(5):1735–1744CrossRefGoogle Scholar
  9. 9.
    Kambali PN, Nikhil V, Pandey AK (2017) Surface and nonlocal effects on response of linear and nonlinear NEMS devices. Appl Math Model 43:252–267MathSciNetCrossRefGoogle Scholar
  10. 10.
    Pourkiaee SM, Khadem SE, Shahgholi M (2016) Parametric resonances of an electrically actuated piezoelectric nanobeam resonator considering surface effects and intermolecular interactions. Nonlinear Dyn 84:1943–1960zbMATHCrossRefGoogle Scholar
  11. 11.
    Hajnayeb A, Khadem S (2011) Nonlinear vibrations of a carbon nanotube resonator under electrical and van der Waals forces. J Comput Theor Nanosci 8(8):1527–1534CrossRefGoogle Scholar
  12. 12.
    Hajnayeb A, Khadem S (2012) Nonlinear vibration and stability analysis of a double-walled carbon nanotube under electrostatic actuation. J Sound Vib 331(10):2443–2456CrossRefGoogle Scholar
  13. 13.
    Oskouie MF, Ansari R, Sadeghi F (2017) Nonlinear vibration analysis of fractional viscoelastic Euler–Bernoulli nanobeams based on the surface stress theory. Acta Mech Solida Sin 30(4):416–424CrossRefGoogle Scholar
  14. 14.
    Rahmanian S, Ghazavi MR, Hosseini-Hashemi S (2018) Effects of size, surface energy and Casimir force on the superharmonic resonance characteristics of a double-layered viscoelastic NEMS device under piezoelectric actuations. Iran J Sci Technol Trans Mech Eng. CrossRefGoogle Scholar
  15. 15.
    SoltanRezaee M, Afrashi M, Rahmanian S (2018) Vibration analysis of thermoelastic nano-wires under Coulomb and dispersion forces. Int J Mech Sci 142–143:33–43CrossRefGoogle Scholar
  16. 16.
    Dai H, Zhao D, Zou J, Wang L (2016) Surface effect on the nonlinear forced vibration of cantilevered nanobeams. Physica E 80:25–30CrossRefGoogle Scholar
  17. 17.
    Chen H-K, Lee C-I (2004) Anti-control of chaos in rigid body motion. Chaos Solitons Fractals 21(4):957–965MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Chau K, Wang Z (2011) Chaos in electric drive systems: analysis, control and application. Wiley, New YorkCrossRefGoogle Scholar
  19. 19.
    Rong CG, Xiaoning D (1998) From chaos to order: methodologies, perspectives and applications, vol 24. World Scientific, SingaporeGoogle Scholar
  20. 20.
    Boccaletti S, Grebogi C, Lai Y-C, Mancini H, Maza D (2000) The control of chaos: theory and applications. Phys Rep 329(3):103–197MathSciNetCrossRefGoogle Scholar
  21. 21.
    Chen G (1999) Controlling chaos and bifurcations in engineering systems. CRC Press, Boca RatonGoogle Scholar
  22. 22.
    Amorim TD, Dantas WG, Gusso A (2015) Analysis of the chaotic regime of MEMS/NEMS fixed–fixed beam resonators using an improved 1DOF model. Nonlinear Dyn 79(2):967–981CrossRefGoogle Scholar
  23. 23.
    Sabarathinam S, Thamilmaran K (2016) Implementation of analog circuit and study of chaotic dynamics in a generalized duffing-type MEMS resonator. Nonlinear Dyn 87:2345–2356CrossRefGoogle Scholar
  24. 24.
    DeMartini BE, Butterfield HE, Moehlis J, Turner KL (2007) Chaos for a microelectromechanical oscillator governed by the nonlinear Mathieu equation. J Microelectromech Syst 16(6):1314–1323CrossRefGoogle Scholar
  25. 25.
    Zhang W-M, Tabata O, Tsuchiya T, Meng G (2011) Noise-induced chaos in the electrostatically actuated MEMS resonators. Phys Lett A 375(32):2903–2910zbMATHCrossRefGoogle Scholar
  26. 26.
    Miandoab EM, Yousefi-Koma A, Pishkenari HN, Tajaddodianfar F (2015) Study of nonlinear dynamics and chaos in MEMS/NEMS resonators. Commun Nonlinear Sci Numer Simul 22(1):611–622zbMATHCrossRefGoogle Scholar
  27. 27.
    Seleim A, Towfighian S, Delande E, Abdel-Rahman E, Heppler G (2012) Dynamics of a close-loop controlled MEMS resonator. Nonlinear Dyn 69(1–2):615–633CrossRefGoogle Scholar
  28. 28.
    Han J, Zhang Q, Wang W (2015) Design considerations on large amplitude vibration of a doubly clamped microresonator with two symmetrically located electrodes. Commun Nonlinear Sci Numer Simul 22(1):492–510CrossRefGoogle Scholar
  29. 29.
    Ding Y, Zheng L, Xu J (2018) Stability and bifurcation analysis of micro-electromechanical nonlinear coupling system with delay. J Math Anal Appl 461(1):577–590MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Sassi SB, Najar F (2018) Strong nonlinear dynamics of MEMS and NEMS structures based on semi-analytical approaches. Commun Nonlinear Sci Numer Simul 61:1–21MathSciNetCrossRefGoogle Scholar
  31. 31.
    Tajaddodianfar F, Hairi Yazdi MR, Pishkenari HN (2015) On the chaotic vibrations of electrostatically actuated arch micro/nano resonators: a parametric study. Int J Bifurc Chaos 25(08):1550106zbMATHCrossRefGoogle Scholar
  32. 32.
    Ni X, Ying L, Lai Y-C, Do Y, Grebogi C (2013) Complex dynamics in nanosystems. Phys Rev E 87(5):052911CrossRefGoogle Scholar
  33. 33.
    Luo S, Li S, Phung T, Hu J (2018) Chaotic behavior and adaptive control of the arch MEMS resonator with state constraint and sector input. IEEE Sens J 18(17):6986–6995CrossRefGoogle Scholar
  34. 34.
    Luo S, Li S, Tajaddodianfar F, Hu J (2018) Observer-based adaptive stabilization of the fractional-order chaotic MEMS resonator. Nonlinear Dyn 92(3):1079–1089zbMATHCrossRefGoogle Scholar
  35. 35.
    Balthazar JM, Tusset AM, Brasil RM, Felix JL, Rocha RT, Janzen FC, Nabarrete A, Oliveira C (2018) An overview on the appearance of the Sommerfeld effect and saturation phenomenon in non-ideal vibrating systems (NIS) in macro and MEMS scales. Nonlinear Dyn 93:19–40CrossRefGoogle Scholar
  36. 36.
    Hadjesfandiari AR, Dargush GF (2011) Couple stress theory for solids. Int J Solids Struct 48(18):2496–2510CrossRefGoogle Scholar
  37. 37.
    Osterberg PM, Senturia SD (1997) M-TEST: a test chip for MEMS material property measurement using electrostatically actuated test structures. J Microelectromech Syst 6(2):107–118CrossRefGoogle Scholar
  38. 38.
    Gurtin ME, Murdoch AI (1975) A continuum theory of elastic material surfaces. Arch Ration Mech Anal 57(4):291–323MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    Gurtin ME, Murdoch AI (1978) Surface stress in solids. Int J Solids Struct 14(6):431–440zbMATHCrossRefGoogle Scholar
  40. 40.
    Ru C (2010) Simple geometrical explanation of Gurtin-Murdoch model of surface elasticity with clarification of its related versions. Sci China Phys Mech Astron 53(3):536–544CrossRefGoogle Scholar
  41. 41.
    Gupta RK (1998) Electrostatic pull-in test structure design for in situ mechanical property measurements of microelectromechanical systems (MEMS). Citeseer, PrincetonGoogle Scholar
  42. 42.
    Huang J-M, Liew K, Wong C, Rajendran S, Tan M, Liu A (2001) Mechanical design and optimization of capacitive micromachined switch. Sens Actuators A 93(3):273–285CrossRefGoogle Scholar
  43. 43.
    Akgöz B, Civalek Ö (2011) Strain gradient elasticity and modified couple stress models for buckling analysis of axially loaded micro-scaled beams. Int J Eng Sci 49(11):1268–1280MathSciNetzbMATHCrossRefGoogle Scholar
  44. 44.
    Alemansour H, Miandoab EM, Pishkenari HN (2017) Effect of size on the chaotic behavior of nano resonators. Commun Nonlinear Sci Numer Simul 44:495–505MathSciNetCrossRefGoogle Scholar
  45. 45.
    Azizi S, Ghazavi M-R, Khadem SE, Rezazadeh G, Cetinkaya C (2013) Application of piezoelectric actuation to regularize the chaotic response of an electrostatically actuated micro-beam. Nonlinear Dyn 73(1–2):853–867MathSciNetzbMATHCrossRefGoogle Scholar
  46. 46.
    Pourkiaee SM, Khadem SE, Shahgholi M, Bab S (2017) Nonlinear modal interactions and bifurcations of a piezoelectric nanoresonator with three-to-one internal resonances incorporating surface effects and van der Waals dissipation forces. Nonlinear Dyn 88(3):1785–1816CrossRefGoogle Scholar
  47. 47.
    SoltanRezaee M, Afrashi M (2016) Modeling the nonlinear pull-in behavior of tunable nano-switches. Int J Eng Sci 109:73–87MathSciNetzbMATHCrossRefGoogle Scholar
  48. 48.
    SoltanRezaee M, Farrokhabadi A, Ghazavi MR (2016) The influence of dispersion forces on the size-dependent pull-in instability of general cantilever nano-beams containing geometrical non-linearity. Int J Mech Sci 119:114–124CrossRefGoogle Scholar
  49. 49.
    Tajaddodianfar F, Yazdi MRH, Pishkenari HN (2017) Nonlinear dynamics of MEMS/NEMS resonators: analytical solution by the homotopy analysis method. Microsyst Technol 23(6):1913–1926CrossRefGoogle Scholar
  50. 50.
    Hadjesfandiari AR, Dargush GF (2014) Evolution of generalized couple-stress continuum theories: a critical analysis. arXiv preprint arXiv:150103112
  51. 51.
    Hadjesfandiari AR, Dargush GF (2015) Foundations of consistent couple stress theory. arXiv preprint arXiv:150906299
  52. 52.
    Hadjesfandiari AR, Dargush GF (2016) Couple stress theories: Theoretical underpinnings and practical aspects from a new energy perspective. arXiv preprint arXiv:161110249
  53. 53.
    Hajesfandiari A, Hadjesfandiari A, Dargush G (2018) Couple stress Rayleigh-Bénard convection in a square cavity. J Nonnewton Fluid MechGoogle Scholar
  54. 54.
    Zhu R, Pan E, Chung PW, Cai X, Liew KM, Buldum A (2006) Atomistic calculation of elastic moduli in strained silicon. Semicond Sci Technol 21(7):906CrossRefGoogle Scholar

Copyright information

© The Brazilian Society of Mechanical Sciences and Engineering 2018

Authors and Affiliations

  1. 1.School of Mechanics EngineeringIran University of Science and TechnologyNarmak, TehranIran
  2. 2.Mechanical Engineering Department, School of EngineeringTarbiat Modares UniversityTehranIran
  3. 3.Center of Excellence in Railway TransportationIran University of Science and TechnologyNarmak, TehranIran

Personalised recommendations