Enhancement of hard disk drive manipulator using piezoelectric actuator mechanisms

  • Qais A. KhasawnehEmail author
  • Mohammad Abdel Kareem Jaradat
  • Malak I. Naji
  • Mohammad Y. Al-Azzeh
Technical Paper


This paper discusses the employment of piezoelectric actuators (PEA) to encompass high precision-scale movement capability of magnetic hard disk drive servo systems. To overcome path/positioning limitations of previous hard disk servo systems, a new design consisting of three PEAs links is proposed. Two different controllers, namely PI and fuzzy, are designed and simulated to assess the performance of the proposed design over a couple of paths under the presence of noise and disturbance. Simulation results show that the proposed design is able to track complex paths over a wider spectrum of motion than conventional hard drive servo systems. This improves the read–write process by affording nanoscale motion and provides high levels of positioning accuracy, as well as wide spectrum of positioning capability. Moreover, both controllers reveal the ability to drive the mechanism with quick response and minimal overshoot, with the fuzzy controller outperforming the PI controller under the presence of noise and disturbance.


Linkages Piezoelectric actuators Hard disk drive Head positioning servo system Microcontrol 


  1. 1.
    Cox A, Monopoli D, Cveticanin D, Goldfarb M, Garcia E (2002) The development of elastodynamic components for piezoelectrically actuated flapping micro-air vehicles. J Intell Mater Syst Struct 13:611–615. CrossRefGoogle Scholar
  2. 2.
    Nguyen VQ, Syaifuddin M, Park HC, Byun DY, Goo NS, Yoon KJ (2008) Characteristics of an insect-mimicking flapping system actuated by a unimorph piezoceramic actuator. J Intell Mater Syst Struct 19:1185–1193. CrossRefGoogle Scholar
  3. 3.
    Sitti M (2003) Piezoelectrically actuated four-bar mechanism with two flexible links for micromechanical flying insect thorax. IEEE/ASME Trans Mechatron 8:26–36. CrossRefGoogle Scholar
  4. 4.
    Yavuz Ş, Malgaca L, Karagülle H (2016) Analysis of active vibration control of multi-degree-of-freedom flexible systems by Newmark method. Simul Model Pract Theory 69:136–148. CrossRefGoogle Scholar
  5. 5.
    Liaw HC, Shirinzadeh B, Smith J (2008) Robust motion tracking control of piezo-driven flexure-based four-bar mechanism for micro/nano manipulation. Mechatronics 18:111–120. CrossRefGoogle Scholar
  6. 6.
    Liaw HC, Shirinzadeh B (2010) Constrained motion tracking control of piezo-actuated flexure-based four-bar mechanisms for micro/nano manipulation. IEEE Trans Autom Sci Eng 7:699–705. CrossRefGoogle Scholar
  7. 7.
    Liaw HC, Shirinzadeh B (2008) Enhanced adaptive motion tracking control of piezo-actuated flexure-based four-bar mechanisms for micro/nano manipulation. Sens Actuators Phys 147:254–262. CrossRefGoogle Scholar
  8. 8.
    Liaw HC, Shirinzadeh B (2011) Robust adaptive constrained motion tracking control of piezo-actuated flexure-based mechanisms for micro/nano manipulation. IEEE Trans Ind Electron 58:1406–1415. CrossRefGoogle Scholar
  9. 9.
    Liaw HC, Shirinzadeh B (2008) Robust generalised impedance control of piezo-actuated flexure-based four-bar mechanisms for micro/nano manipulation. Sens Actuators Phys 148:443–453. CrossRefGoogle Scholar
  10. 10.
    Wang J, Pi Y, Hu Y, Zhu Z, Zeng L (2017) Adaptive simultaneous motion and vibration control for a multi flexible-link mechanism with uncertain general harmonic disturbance. J Sound Vib 408:60–72. CrossRefGoogle Scholar
  11. 11.
    Tian Y, Shirinzadeh B, Zhang D (2009) A flexure-based five-bar mechanism for micro/nano manipulation. Sens Actuators Phys 153:96–104. CrossRefGoogle Scholar
  12. 12.
    Arisaka T, Shimizu T, Masuda H, Atsumi T, Nakamura G (2003) Mc-22 development of a head actuator based on the new design concept for the wide servo bandwidth in a hard disk drives. Proc JSME-IIPASME-ISPS Jt Conf Micromechatro Inf Precis Equip IIPISPS Jt MIPE 2003:187–188. CrossRefGoogle Scholar
  13. 13.
    Liu Y-T, Wang C-C (2009) One-DOF precision position control using the combined piezo-VCM actuator. Int J Med Health Biomed Bioeng Pharm Eng 3:10–15Google Scholar
  14. 14.
    Dong W, Tang J, ElDeeb Y (2009) Design of a linear-motion dual-stage actuation system for precision control. Smart Mater Struct 18:095035. CrossRefGoogle Scholar
  15. 15.
    Liu Y-T, Li B-J (2010) Precision positioning device using the combined piezo-VCM actuator with frictional constraint. Precis Eng 34:534–545. CrossRefGoogle Scholar
  16. 16.
    Liu Dingqiang WZ, Yumei H, Yong Y (2011) Position error compensation for a macro–micro feed system. Mech Sci Technol Aerosp Eng 4:645Google Scholar
  17. 17.
    Xu Q (2013) Design, testing and precision control of a novel long-stroke flexure micropositioning system. Mech Mach Theory 70:209–224. CrossRefGoogle Scholar
  18. 18.
    Xu LM, Guo N, Zeng S, Lin RM, Du H (2004) Dynamics and control performance of hard disk drives with passive dampers. Proc Inst Mech Eng Part C J Mech Eng Sci 218:1555–1568. CrossRefGoogle Scholar
  19. 19.
    Atsumi T, Shimizu T, Arisaka T, Masuda H (2006) Integrated design of a controller and a structure for head-positioning in hard disk drives. J Vib Control 12:713–736. CrossRefzbMATHGoogle Scholar
  20. 20.
    Huang J, Liu M, Zhang J (2015) High-order non-singular terminal sliding mode control for dual-stage hard disk drive head positioning systems. Proc Inst Mech Eng Part J Syst Control Eng 229:193–201. CrossRefGoogle Scholar
  21. 21.
    Horowitz R, Li Y, Oldham K, Kon S, Huang X (2007) Dual-stage servo systems and vibration compensation in computer hard disk drives. Control Eng Pract 15:291–305. CrossRefGoogle Scholar
  22. 22.
    Lin C-J, Yang S-R (2006) Precise positioning of piezo-actuated stages using hysteresis-observer based control. Mechatronics 16:417–426. CrossRefGoogle Scholar
  23. 23.
    Chi Z, Xu Q (2014) Recent advances in the control of piezoelectric actuators. Int J Adv Robot Syst 11:1. CrossRefGoogle Scholar
  24. 24.
    Al-Fandi M, Jaradat MAK, Sardahi Y (2011) Optimal PI-fuzzy logic controller of glucose concentration using genetic algorithm. Int J Know-Based Intell Eng Syst 15:99–117. CrossRefGoogle Scholar
  25. 25.
    Badr BM, Ali WG (2010) Nano positioning fuzzy control for piezoelectric actuators. Int J Eng Tech IJET-IJENS 10:70–74Google Scholar
  26. 26.
    Bashash S, Jalili N, Evans P, Dapino MJ (2009) Recursive memory-based hysteresis modeling for solid-state smart actuators. J Intell Mater Syst Struct 20:2161–2171. CrossRefGoogle Scholar
  27. 27.
    Lin C-J, Yang S-R (2005) Modeling of a piezo-actuated positioning stage based on a hysteresis observer. Asian J Control 7:73–80. CrossRefGoogle Scholar
  28. 28.
    Wiguna T, Heo S, Park HC, Goo NS (2009) Design and experimental parametric study of a fish robot actuated by piezoelectric actuators. J Intell Mater Syst Struct 20:751–758. CrossRefGoogle Scholar
  29. 29.
    Smith RC, Hu Z (2012) Homogenized energy model for characterizing polarization and strains in hysteretic ferroelectric materials: material properties and uniaxial model development. J Intell Mater Syst Struct 23:1833–1867. CrossRefGoogle Scholar
  30. 30.
    Trabia MB, Yim W, Saadeh M (2011) Modeling of hysteresis and backlash for a smart fin with a piezoelectric actuator. J Intell Mater Syst Struct 22:1161–1176. CrossRefGoogle Scholar
  31. 31.
    Zhong J, Yao B (2008) Adaptive robust precision motion control of a piezoelectric positioning stage. IEEE Trans Control Syst Technol 16:1039–1046. CrossRefGoogle Scholar
  32. 32.
    Aridogan U, Basdogan I (2015) A review of active vibration and noise suppression of plate-like structures with piezoelectric transducers. J Intell Mater Syst Struct 26:1455–1476. CrossRefGoogle Scholar
  33. 33.
    Zuo G, Wong L (2016) A review on recent active vibration control techniques. arXiv preprint arXiv:1601.05889
  34. 34.
    Peng J, Chen X (2013) A survey of modeling and control of piezoelectric actuators. Mod Mech Eng 03:1–20. CrossRefGoogle Scholar
  35. 35.
    Jaradat MA, Awad MI, El-Khasawneh BS (2012) Genetic-fuzzy sliding mode controller for a DC servomotor system. In: 8th international symposium on mechatronics and its applications (ISMA). IEEE, pp 1–6.

Copyright information

© The Brazilian Society of Mechanical Sciences and Engineering 2018

Authors and Affiliations

  • Qais A. Khasawneh
    • 1
    • 3
    Email author
  • Mohammad Abdel Kareem Jaradat
    • 1
    • 2
  • Malak I. Naji
    • 1
  • Mohammad Y. Al-Azzeh
    • 1
  1. 1.Department of Mechanical EngineeringJordan University of Science and TechnologyIrbidJordan
  2. 2.Department of Mechanical EngineeringAmerican University of SharjahSharjahUAE
  3. 3.Department of Electro Mechanical Engineering TechnologyAbu Dhabi PolytechnicAbu DhabiUAE

Personalised recommendations