Influence of a cobalt-based wire injection in austenitic coating deposited via CW-GMAW

  • Tárcio dos Santos CabralEmail author
  • Sileno Espíndula Dias
  • Ademir Angelo Castro Filho
  • Paola Evelen Costa Baia
  • Diego Jorge Alves Borges
  • Eduardo de Magalhães Braga


The control of cavitation erosion wear is a hindrance concerning the maintenance of hydraulic equipment’s. The most used consumables to fill eroded areas are cobalt-based austenitic steels, commercially known as “Stellites”. The current study carried out analysis of the coatings deposited via the new cold wire gas metal arc welding (CW-GMAW) process. The coatings were deposited via CW-GMAW process, variating three levels of addition wire feeding speed. The coating consisted in a three-layer deposit; the first two with an AWS ER 309L wire, via GMAW process, and the third layer employed the interaction between AWS ER 309L and Stellite 21 E wires, via CW-GMAW process. The coatings obtained an increase in cobalt values, with silicon and molybdenum variations, as well as the iron value reduction for each used feeding variation. The coatings were subjected to an accelerated erosion test, according to ASTM G32 Standards. The best obtained result corresponded to the coating with 7.2 m/min additional speed.


GMAW CW-GMAW Stellite 21 ASTM G32 Cavitation 



To the Federal University of Pará, and to the Laboratory of Metallic Materials Characterization (LCAM), where the presented experiments could be performed. A special thanks to the teacher and counselor Eduardo Braga, for the technical assistance, and to Capes, CNPQ and PROPESP/UFPA for the financial support.


Funding was provided by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (BR).


  1. 1.
    Sreedhar BK, Albert SK, Pandit AB (2015) Cavitation erosion testing of austenitic stainless steel (316L) in liquid sodium. Wear 328–329:436–442. CrossRefGoogle Scholar
  2. 2.
    Escaler X, Egusquiza E, Farhat M et al (2006) Detection of cavitation in hydraulic turbines. Mech Syst Signal Process 20:983–1007. CrossRefGoogle Scholar
  3. 3.
    Franc JP, Michel JM (2004) Fundamentals of cavitationGoogle Scholar
  4. 4.
    Kumar P, Saini RP (2010) Study of cavitation in hydro turbines—a review. Renew Sustain Energy Rev 14:374–383. CrossRefGoogle Scholar
  5. 5.
    Peters A, Sagar H, Lantermann U, el Moctar O (2015) Numerical modelling and prediction of cavitation erosion. Wear 338–339:189–201. CrossRefGoogle Scholar
  6. 6.
    Xiaojun Z, Procopiak LAJ, Souza NC, d’Oliveira ASCM (2003) Phase transformation during cavitation erosion of a Co stainless steel. Mater Sci Eng, A 358:199–204. CrossRefGoogle Scholar
  7. 7.
    Richman RH, Mcnaughton WP (1990) Correlation of cavitation erosion behavior with mechanical properties of metals. Wear 140:63–82. CrossRefGoogle Scholar
  8. 8.
    da Silva HR (2014) Aspectos operacionais de revestimentos soldados: desgaste erosivo e cavitação. Universidade Federal de Uberlândia, UberlândiaGoogle Scholar
  9. 9.
    Cabral TS, Braga EM, Mendonça EAM, Scott A (2015) Influence of procedures and transfer modes in MAG welding in the reduction of deformations on marine structure panels. Weld Int 29:928–936. CrossRefGoogle Scholar
  10. 10.
    Ribeiro RA, Santos EBF, Assunção PDC et al (2015) Predicting weld bead geometry in the novel CW-GMAW process. Weld J 94:301s–311sGoogle Scholar
  11. 11.
    Li KH, Chen JS, Zhang YM (2007) Double-electrode GMAW process and control. Weld J 86:231s–237sGoogle Scholar
  12. 12.
    Li KH, Zhang YM (2008) Consumable double-electrode GMAW—Part l: the process. Weld J 87:11s–17sGoogle Scholar
  13. 13.
    Li KH, Zhang YM (2008) Consumable double-electrode GMAW part II: monitoring, modeling, and control. Weld J 87:44s–50sCrossRefGoogle Scholar
  14. 14.
    Lu Y, Zhang YM, Kvidahl L (2013) Heat input reduction in fillet welding using bypass and root opening. Weld J 92:390s–400sGoogle Scholar
  15. 15.
    Lu Y, Chen S, Shi Y et al (2014) Double-electrode arc welding process: principle, variants, control and developments. J Manuf Process 16:93–108. CrossRefGoogle Scholar
  16. 16.
    Silva FG (2010) Estudo da viabilidade do processo de soldagem FCAW com adição de arame frio aplicado a indústria naval. Universidade Federal do Pará, BelémGoogle Scholar
  17. 17.
    Cabral TS, Cruz L, Silva FG, Braga EM (2011) Desenvolvimento e estudo da viabilidade de um injetor de arame adicional para o processo de soldagem Mig/Mag e FCAW. In: 6th Brazilian conference on manufacturing engineering. Caxias do Sul, RSGoogle Scholar
  18. 18.
    Hattori S, Mikami N (2009) Cavitation erosion resistance of stellite alloy weld overlays. Wear 267:1954–1960. CrossRefGoogle Scholar
  19. 19.
    ASTM G32 (2016) Standard test method for cavitation erosion using vibratory apparatus. Annual Book of ASTM Standards 20.
  20. 20.
    Niederhofer P, Huth S, Theisen W (2015) Cavitation erosion and hydroabrasion resistance of cold work tool steels produced by powder metallurgy. Wear 332–333:1059–1069. CrossRefGoogle Scholar
  21. 21.
    Kishor B, Chaudhari GP, Nath SK (2014) Cavitation erosion of thermomechanically processed 13/4 martensitic stainless steel. Wear 319:150–159. CrossRefGoogle Scholar
  22. 22.
    Light KH (2005) Development of a cavitation erosion resistant. The University of Maine, OronoGoogle Scholar
  23. 23.
    Assunção PDC (2013) Estudo da viabilidade do processo de soldagem GMAW-DCW (Double Cold Wire). Universidade Federal do Pará, BelémGoogle Scholar
  24. 24.
    Woodford DA, Beattie HJ (1971) A deformation-induced phase transformation involving a four-layer stacking sequence in a Co–Fe alloy. Metall Mater Trans B 2:3223–3225. CrossRefGoogle Scholar
  25. 25.
    Reed-Hill RE (1982) Principios de metalurgia física, 2o ed. Gb. Dois, Rio de JaneiroGoogle Scholar
  26. 26.
    Geddes B, Leon H, Huang X (2010) Superalloys: alloying and performance. ASM International Materials Park, OhioGoogle Scholar
  27. 27.
    Antony KC (1983) Wear-resistant cobalt-base alloys. JOM 35:52–60. CrossRefGoogle Scholar
  28. 28.
    Matthews SJ, Crook P, Flasche LH, Tackett JW (1991) Weldability characteristics of a new corrosion and wear-resistant cobalt alloy. Weld J Res Suppl 70:331–338Google Scholar
  29. 29.
    Ribeiro HO, de Buschinelli AJ, JC Dutra, D’Oliveira ASCM (2010) Resistência à erosão por cavitação de aços inoxidáveis austeníticos CrMnSiN depositados por PTA. Soldag e Insp 15:121–129. CrossRefGoogle Scholar
  30. 30.
    Boccanera L, Barra SR, Buschinelli AJ de A et al (1998) Influência do Acabamento Superficial, Porosidade e Diluição Sobre a Resistência à Cavitação de Revestimentos Soldados. Congr Ibero-Americano Soldag VGoogle Scholar
  31. 31.
    Allenstein ÂN (2007) Estudo da resistência à cavitação do aço inoxidável martensítico Ca6-Nm nitretado por plasma. Universidade Federal do Paraná, CuritibaGoogle Scholar
  32. 32.
    Krella A (2011) An experimental parameter of cavitation erosion resistance for TiN coatings. Wear 270:252–257. CrossRefGoogle Scholar
  33. 33.
    Iwai Y, Okada T, Tanaka S (1989) A study of cavitation bubble collapse pressures and erosion part 2: estimation of erosion from the distribution of bubble collapse pressures. Wear 133:233–243. CrossRefGoogle Scholar
  34. 34.
    Barik RC, Wharton JA, Wood RJK, Stokes KR (2009) Electro-mechanical interactions during erosion-corrosion. Wear 267:1900–1908. CrossRefGoogle Scholar
  35. 35.
    Yong X, Xiao N, Shen H, Song Y (2016) Responses of the corroded surface layer of austenitic stainless steel to different corrosive conditions under cavitation. Mater Sci Eng, A 671:118–126. CrossRefGoogle Scholar
  36. 36.
    Santa JF, Blanco JA, Giraldo JE, Toro A (2011) Cavitation erosion of martensitic and austenitic stainless steel welded coatings. Wear 271:1445–1453. CrossRefGoogle Scholar
  37. 37.
    Lopez D, Alonso Falleiros N, Paulo Tschiptschin A (2011) Effect of nitrogen on the corrosion–erosion synergism in an austenitic stainless steel. Tribol Int 44:610–616. CrossRefGoogle Scholar
  38. 38.
    Kwok CT, Man HC, Cheng FT (1998) Cavitation erosion and damage mechanisms of alloys with duplex structures. Mater Sci Eng, A 242:108–120. CrossRefGoogle Scholar
  39. 39.
    Kwok CT, Man HC, Cheng FT (1998) Cavitation erosion of duplex and super duplex stainless steels. Scr Mater 39:1229–1236. CrossRefGoogle Scholar
  40. 40.
    Levin BF, Dupont JN, Marder AR (1995) Weld overlay coatings for erosion control. Wear 181–183:810–820. CrossRefGoogle Scholar
  41. 41.
    Jiménez LBV (2014) Estudo dos micromecanismos de dano por cavitação em aço inoxidável UNS S 31803 de alto teor de nitrogênio com e sem encruamento. Escola Politécnica da Universidade de São Paulo, São PauloGoogle Scholar
  42. 42.
    RODRIGUES LAS (2011) Caracterização microestrutural e de propriedades mecânicas de soldas do aço ASTM A 131 pelos processos FCAW convencional e com adição de arame frio. Universidade Federal do Pará, BelémGoogle Scholar
  43. 43.
    FERREIRA ASA (2014) A influência do teor de silício na microestrutura e propriedades mecânicas do aço ASTM 131-GRAU A soldado por GMAW-CW e GMAW-DCW. Universidade Federal do Pará, BelémGoogle Scholar
  44. 44.
    Bregliozzi G, Di Schino A, Ahmed SIU et al (2005) Cavitation wear behaviour of austenitic stainless steels with different grain sizes. Wear 258:503–510. CrossRefGoogle Scholar

Copyright information

© The Brazilian Society of Mechanical Sciences and Engineering 2018

Authors and Affiliations

  • Tárcio dos Santos Cabral
    • 1
    Email author
  • Sileno Espíndula Dias
    • 1
  • Ademir Angelo Castro Filho
    • 1
  • Paola Evelen Costa Baia
    • 1
  • Diego Jorge Alves Borges
    • 1
  • Eduardo de Magalhães Braga
    • 1
  1. 1.Universidade Federal do Pará (UFPA)BelémBrasil

Personalised recommendations