Measurement and estimation of the weld bead geometry in arc welding processes: the last 50 years of development

  • Guillermo Alvarez BestardEmail author
  • Sadek Crisóstomo Absi Alfaro


The arc welding process is widely used in industry, but the automatic control is limited by the difficulty in the process for measuring the principal magnitudes and to close the control loop. Adverse environmental conditions make use of conventional measurement systems difficult for obtaining information of the weld bead geometry. Under these conditions, indirect sensing techniques are a good option. Different sensing and estimation techniques are used, but few researchers are focusing on the flat welding position. The theory and practice prove that the dynamic models are the best representation to control the welding process, but most studies are performed with static models. This work is a review of the algorithms and sensing techniques used for collecting values of the arc welding process that allow the measurement or estimation of the weld bead geometry. Special attention is given to sensor fusion techniques due to its promising future in the welding process. Discussed in this text are the papers, patents, thesis and other documents found on the theme. It shows a summary of their evolution over the last 50 years.


Arc welding process Bead geometry estimation Bead geometry measure Sensor fusion 



This work has been supported by the Brasilia University (UnB), the government research CAPES foundation and CNPQ.


  1. 1.
    Kovacevic R, Zhang YM (1997) Real-time image processing for monitoring of free weld pool surface. J Manuf Sci Eng 119:161–169. CrossRefGoogle Scholar
  2. 2.
    Kovacevic R, Zhang YM, Li L (1996) Monitoring of weld joint penetration based on weld pool geometrical appearance. Weld J Incl Weld Res Suppl 75:317–329Google Scholar
  3. 3.
    Lim TG, Cho HS (1993) Estimation of weld pool sizes in GMA welding process using neural networks. J Syst Control Eng 207:15–26Google Scholar
  4. 4.
    Saeed G, Zhang YM, Jaynes C (2005) Weld pool surface monitoring and depth extraction using a calibrated CCD sensor. In: ASM proceedings of the international conference: trends in welding research, pp 665–670Google Scholar
  5. 5.
    Bae KY, Lee TH, Ahn KC (2002) An optical sensing system for seam tracking and weld pool control in gas metal arc welding of steel pipe. J Mater Process Technol 120:458–465. CrossRefGoogle Scholar
  6. 6.
    Hirai A, Kaneko Y, Hosoda T, et al (2001) Sensing and control of weld pool by fuzzy-neural network in robotic welding system. In: IECON’01. 27th annual conference of the ieee industrial electronics society (Cat. No.37243), IEEE, pp 238–242Google Scholar
  7. 7.
    Cruz JAG (2014) Uma metodologia para modelagem e controle da altura do reforço e da largura do cordão de solda no processo gmaw. Master thesis in mechatronic systems, Universidade de BrasíliaGoogle Scholar
  8. 8.
    Torres EMM (2013) Uma metodologia para modelagem e controle da largura do cordão de solda no processo GMAW. Master thesis in mechatronic systems, Universidade de BrasíliaGoogle Scholar
  9. 9.
    Pinto-Lopera JE, Motta JMST, Absi Alfaro SC (2016) Real-time measurement of width and height of weld beads in GMAW processes. Sensors 16:1500. CrossRefGoogle Scholar
  10. 10.
    Font comas T, Diao C, Ding J et al (2017) A passive imaging system for geometry measurement for the plasma arc welding process. IEEE Trans Ind Electron 64:7201–7209. CrossRefGoogle Scholar
  11. 11.
    Chen S-B, Wu J (2009) Lecture notes in electrical engineering. Intelligentized methodology for arc welding dynamical process. Visual information acquiring, knowledge modeling and intelligent control. Springer, BerlinGoogle Scholar
  12. 12.
    Yu H, Ye Z, Chen S (2013) Application of arc plasma spectral information in the monitor of Al–Mg alloy pulsed GTAW penetration status based on fuzzy logic system. Int J Adv Manuf Technol 68:2713–2727. CrossRefGoogle Scholar
  13. 13.
    Brosed FJ, Aguilar JJ, Guillomïa D, Santolaria J (2011) 3D geometrical inspection of complex geometry parts using a novel laser triangulation sensor and a robot. Sensors 11:90–110. CrossRefGoogle Scholar
  14. 14.
    Luo H, Chen X (2005) Laser visual sensing for seam tracking in robotic arc welding of titanium alloys. Int J Adv Manuf Technol 26:1012–1017. CrossRefGoogle Scholar
  15. 15.
    Micro-Epsilon (2017) Laser line triangulation. In: Micro-epsilon. Accessed 1 Jan 2017
  16. 16.
    Kovacevic R, Zhang YM (1996) Sensing free surface of arc weld pool using specular reflection: principle and analysis. Proc Inst Mech Eng Part B J Eng Manuf 210:553–564Google Scholar
  17. 17.
    Liu YK, Zhang YM (2014) Model-based predictive control of weld penetration in gas tungsten arc welding. IEEE Trans Control Syst Technol 22:955–966. CrossRefGoogle Scholar
  18. 18.
    Liu YK, Zhang WJ, Zhang YM (2015) Nonlinear modeling for 3D weld pool characteristic parameters in GTAW. Weld J 94:231s–240sGoogle Scholar
  19. 19.
    Liu Y, Zhang Y (2013) Control of 3D weld pool surface. Control Eng Pract 21:1469–1480. CrossRefGoogle Scholar
  20. 20.
    Zhang WJ, Zhang X, Zhang YM (2013) Robust pattern recognition for measurement of three dimensional weld pool surface in GTAW. J Intell Manuf. CrossRefGoogle Scholar
  21. 21.
    Zha Y (2008) Real-time weld process monitoring. CRC Press LLC, Boca RatonGoogle Scholar
  22. 22.
    Song H, Zhang Y (2007) An image processing scheme for measurement of specular weld pool surface. In: 2007 2nd IEEE conference on industrial electronics and applications. IEEE, pp 5–10Google Scholar
  23. 23.
    Wei S, Kong M, Lin T, Chen S (2011) Three-dimensional weld seam tracking for robotic welding by composite sensing technology. Ind Robot Int J 38:500–508. CrossRefGoogle Scholar
  24. 24.
    De A, Parle D (2003) Real time seam tracking system for automated fusion arc welding. Sci Technol Weld Join 8:340–346. CrossRefGoogle Scholar
  25. 25.
    Huang W, Kovacevic R (2012) Development of a real-time laser-based machine vision system to monitor and control welding processes. Int J Adv Manuf Technol 63:235–248. CrossRefGoogle Scholar
  26. 26.
    Moon HS, Kim YB, Beattie RJ (2006) Multi sensor data fusion for improving performance and reliability of fully automatic welding system. Int J Adv Manuf Technol 28:286–293. CrossRefGoogle Scholar
  27. 27.
    Wang QL, Yang CL, Geng Z (1993) Separately excited resonance phenomenon of the weld pool and its application. Weld Res Suppl Weld J 72:455–462Google Scholar
  28. 28.
    Xiao YH, Ouden G (1990) A study of GTA weld pool oscillation. Weld Res Suppl Weld J 69:289–293Google Scholar
  29. 29.
    Xiao YH, Ouden G (1993) Weld pool oscillation during GTA welding of mild steel. Weld Res Suppl Weld J 72:428–434Google Scholar
  30. 30.
    Aendenroomer AJR, den Ouden G (1998) Weld pool oscillation as a tool for penetration sensing during pulsed GTA welding. Weld J 77:181–187Google Scholar
  31. 31.
    Shi Y, Zhang G, Ma XJ et al (2015) Laser-vision-based measurement and analysis of weld pool oscillation frequency in GTAW-P. Weld J 94:176–187Google Scholar
  32. 32.
    Lott LA (1984) Ultrasonic detection of molten solid interface of weld pools. Mater Eval 42:337–341Google Scholar
  33. 33.
    Lv N, Xu Y, Zhong J et al (2013) Research on detection of welding penetration state during robotic GTAW process based on audible arc sound. Ind Robot Int J 40:474–493. CrossRefGoogle Scholar
  34. 34.
    Beardsley HE, Zhang YMM, Kovacevic R (1994) Infrared sensing of full penetration state in gas tungsten arc welding. Int J Mach Tool Manuf 34:1079–1090. CrossRefGoogle Scholar
  35. 35.
    Peña Santos DY (2012) Evaluación de la técnica de termografía para la detección de defectos en soldaduras. Universidad LibreGoogle Scholar
  36. 36.
    NIT (2015) Infrared sensor system for arc welding process monitoring. Accessed 2 Mar 2017
  37. 37.
    Sforza P, de Blasiis D (2002) On-line optical monitoring system for arc welding. NDT E Int 35:37–43Google Scholar
  38. 38.
    Chen B, Chen S, Feng J (2014) A study of multisensor information fusion in welding process by using fuzzy integral method. Int J Adv Manuf Technol 74:413–422. CrossRefGoogle Scholar
  39. 39.
    Chen B, Wang J, Chen S (2010) Prediction of pulsed GTAW penetration status based on BP neural network and D-S evidence theory information fusion. Int J Adv Manuf Technol 48:83–94. CrossRefGoogle Scholar
  40. 40.
    Chen B, Feng J (2014) Multisensor information fusion of pulsed GTAW based on improved D-S evidence theory. Int J Adv Manuf Technol 71:91–99. CrossRefGoogle Scholar
  41. 41.
    Zacksenhouse M, Hardt DE (1983) Weld pool impedance identification for size measurement and control. J Dyn Syst Meas Control 105:179. CrossRefGoogle Scholar
  42. 42.
    Nagesh DS, Datta GL (2002) Prediction of weld bead geometry and penetration in shielded metal-arc welding using artificial neural networks. J Mater Process Technol 123:303–312Google Scholar
  43. 43.
    Kim IS, Son JS, Park CE et al (2005) An investigation into an intelligent system for predicting bead geometry in GMA welding process. J Mater Process Technol 159:113–118. CrossRefGoogle Scholar
  44. 44.
    Nagesh DS, Datta GL (2010) Genetic algorithm for optimization of welding variables for height to width ratio and application of ANN for prediction of bead geometry for TIG welding process. Appl Soft Comput J 10:897–907. CrossRefGoogle Scholar
  45. 45.
    Sudhakaran R, Murugan VV, Sivasakthivel PS, Balaji M (2011) Prediction and optimization of depth of penetration for stainless steel gas tungsten arc welded plates using artificial neural networks and simulated annealing algorithm. Neural Comput Appl. CrossRefGoogle Scholar
  46. 46.
    Akkas N, Karayel D, Ozkan SS et al (2013) Modeling and analysis of the weld bead geometry in submerged arc welding by using adaptive neurofuzzy inference system. Math Probl Eng 2013:1–10Google Scholar
  47. 47.
    Xue Y, Kim IS, Son JS et al (2005) Fuzzy regression method for prediction and control the bead width in the robotic arc-welding process. J Mater Process Technol 165:1134–1139. CrossRefGoogle Scholar
  48. 48.
    Sung BS, Kim IS, Xue Y et al (2007) Fuzzy regression model to predict the bead geometry in the robotic welding process. Acta Metall Sinica (Engl Lett) 20:391–397Google Scholar
  49. 49.
    Nele L, Sarno E, Keshari A (2013) Modeling of multiple characteristics of an arc weld joint. Int J Adv Manuf Technol 69:1331–1341. CrossRefGoogle Scholar
  50. 50.
    Kim IS, Basu A, Siores E (1996) Mathematical models for control of weld bead penetration in the GMAW process. Int J Adv Manuf Technol 12:393–401. CrossRefGoogle Scholar
  51. 51.
    Kim I-S, Park C-E, Jeon Y-J et al (2001) A study on development of a new algorithm for predicting the process variables in GMA welding processes. JSME Int J 44:561–566Google Scholar
  52. 52.
    Murugan N, Gunaraj V (2005) Prediction and control of weld bead geometry and shape relationships in submerged arc welding of pipes. J Mater Process Technol 168:478–487. CrossRefGoogle Scholar
  53. 53.
    Doumanidis C, Kwak YM (2002) Multivariable adaptive control of the bead profile geometry in gas metal arc welding with thermal scanning. Int J Press Vessels Pip 79:251–262. CrossRefGoogle Scholar
  54. 54.
    Chen SB, Zhang Y, Qiu T, Lin T (2003) Robotic welding systems with vision-sensing and self-learning neuron control of arc welding dynamic process. J Intell Robot Syst 36:191–208Google Scholar
  55. 55.
    Wu C, Gao J (2006) Vision-based neuro-fuzzy control of weld penetration in gas tungsten arc welding of thin sheets. Int J Model Identif Control 1:126–132Google Scholar
  56. 56.
    Chen H, Lv F, Lin T, Chen S (2009) Closed-loop control of robotic arc welding system with full-penetration monitoring. J Intell Robot Syst Theory Appl 56:565–578. CrossRefzbMATHGoogle Scholar
  57. 57.
    Yan Z, Zhang G, Wu L (2011) Simulation and controlling for weld shape process in P-GMAW based on fuzzy logic. In: Proceedings of the 2011 international conference on mechatronics and automation, pp 2078–2082Google Scholar
  58. 58.
    Lv N, Zhong J, Chen H et al (2014) Real-time control of welding penetration during robotic GTAW dynamical process by audio sensing of arc length. Int J Adv Manuf Technol 74:235–249. CrossRefGoogle Scholar
  59. 59.
    Liu Y, Zhang W, Zhang Y (2015) Dynamic neuro-fuzzy-based human intelligence modeling and control in GTAW. IEEE Trans Autom Sci Eng 12:324–335. CrossRefGoogle Scholar
  60. 60.
    Doumanidis CC, Hardt DE (1990) Simultaneous in-process control of heat affected zone and cooling rate during arc welding. Weld J 69(5):186s–196sGoogle Scholar
  61. 61.
    Song JB, Hardt DE (1993) Closed-loop control of weld pool depth using a thermally based depth estimate. Weld J 72:471s–478sGoogle Scholar
  62. 62.
    Zhang YM, Kovacevic R, Wu L (1996) Dynamic analysis and identification of gas tungsten arc welding process for full penetration control. J Eng Ind 118:123–136. CrossRefGoogle Scholar
  63. 63.
    Zhang YYM, Kovacevic R (1998) Neurofuzzy model-based predictive control of weld fusion zone geometry. IEEE Trans Fuzzy Syst 6:389–401. CrossRefGoogle Scholar
  64. 64.
    Zhang GJ, Chen SB, Wu L (2005) Intelligent control of pulsed GTAW with filler metal. Weld J 84:9S–16SGoogle Scholar
  65. 65.
    Zhao D, Chen S, Wu L et al (2001) Intelligent control for the shape of the weld pool in pulsed GTAW with filler metal. Weld Res Suppl 80:253–260Google Scholar
  66. 66.
    American Welding Society Staff (2002) Welding science and technology, 9th edn. American Welding Society, MiamiGoogle Scholar
  67. 67.
    Francois N, Fafard P, Patenaude G, Tremblay J (1988) Method and apparatus for controlling root pass weld penetration in open butt joints. US Patent Number 4733051Google Scholar
  68. 68.
    Doumanidis CC (1994) Multiplexed and distributed control of automated welding. IEEE Control Syst 14:13–24. CrossRefGoogle Scholar
  69. 69.
    Sreedhar U, Krishnamurthy CV, Balasubramaniam K et al (2012) Automatic defect identification using thermal image analysis for online weld quality monitoring. J Mater Process Technol 212:1557–1566. CrossRefGoogle Scholar
  70. 70.
    Karadeniz E (2007) The effect of process parameters on penetration in gas metal arc welding processes. Mater Des 28:649–656. CrossRefGoogle Scholar
  71. 71.
    Wang X (2014) Three-dimensional vision-based sensing of GTAW: a review. Int J Adv Manuf Technol 72:333–345. CrossRefGoogle Scholar
  72. 72.
    Lin ML, Eagar TW (1984) Influence of surface depression and convection on arc weld pool geometry. In: Chen MM, Mazumder J, Tucker CL (eds) Transport phenomena in materials processing. ASME, New York, pp 63–69Google Scholar
  73. 73.
    Lin M, Eagar TW (1985) lnfluence of arc pressure on weld pool geometry. Weld J 64:163–169Google Scholar
  74. 74.
    Cheng SB, Zhang Y, Lin Y et al (2004) Welding robotic systems with visual sensing and real-time control of dynamic weld pool during pulsed GTAW. Int J Robot Autom 19:28–35Google Scholar
  75. 75.
    Alfaro SCA, Drews P (2006) Intelligent systems for welding process automation. J Braz Soc Mech Sci Eng 28:25–29. CrossRefGoogle Scholar
  76. 76.
    Chen B, Wang J, Chen S (2009) Modeling of pulsed GTAW based on multi-sensor fusion. Sens Rev 29:223–232. CrossRefGoogle Scholar
  77. 77.
    Mota CP, Machado MVR, Fernandes DB, Vilarinho LO (2011) Estudo da emissão de raios infravermelho próximo em processos de soldagem a arco. Soldag e Insp 16:44–52Google Scholar
  78. 78.
    Mota CP, Machado MVR, Neto RMF, Vilarinho LO (2013) Sistema de visão por infravermelho próximo para monitoramento de processos de soldagem a arco. Soldag e Insp 18:19–30. CrossRefGoogle Scholar
  79. 79.
    Bestard GA, Alfaro SCA (2017) Sistema de adquisición de datos y control en lazo abierto para procesos de soldadura GMAW. In: Taller Internacional de Cibernética Aplicada TCA 2017. La Habana, pp 1–7Google Scholar
  80. 80.
    Iceland WF, Martin E. O’Dor (1971) Weld penetration control. US Patent Number 3567899Google Scholar
  81. 81.
    Nomura H, Satoh Y, Tohno K et al (1980) Arc light intensity controls current in SA welding system. Weld Met Fabr 48:457–463Google Scholar
  82. 82.
    Chen WH, Nagarajan S, Chin BA (1988) Weld penetration sensing and control. Infrared Technol 972:268–272Google Scholar
  83. 83.
    Nagarajan S, Chen HW, Chin BA (1989) Infrared sensing for adaptive arc welding. Weld J 68:462–466Google Scholar
  84. 84.
    Bangs ER, Longinow NE, Blaha JR (1989) Using infrared image to monitor and control welding. US Patent Number 4877940Google Scholar
  85. 85.
    Nagarajan S, Banerjee P, Chen W, Chin BA (1990) Weld pool size and position control using IR sensors. In: Proceedings of NSF design and manufacturing systems conference. Arizona State UniversityGoogle Scholar
  86. 86.
    Chen W, Chin BA (1990) Monitoring joint penetration using infrared sensing techniques. Weld J 69:18–85Google Scholar
  87. 87.
    Nagarajan S, Chin BA, Chen W (1992) Control of the welding process using infrared sensors. IEEE Trans Robot Autom 8:86–93Google Scholar
  88. 88.
    Gweon D (1999) In-process joint strength estimation in pulsed laser spot welding using artificial neural networks. J Manuf Process 1:31–42Google Scholar
  89. 89.
    WikleIII HC, Zee RH, Chin BA (1999) A sensing system for weld process control. J Mater Process Technol 90:254–259Google Scholar
  90. 90.
    Wikle HC III, Kottilingam S, Zee RH, Chin BA (2001) Infrared sensing techniques for penetration depth control of the sub-merged arc welding process. J Mater Process Technol 113:228–233Google Scholar
  91. 91.
    Fan H, Ravala NK, Wikle HC, Chin BA (2003) Low-cost infrared sensing system for monitoring the welding process in the presence of plate inclination angle. J Mater Process Technol 140:668–675. CrossRefGoogle Scholar
  92. 92.
    Cullen JD, Athi N, Johnson P et al (2008) Multisensor fusion for on line monitoring of the quality of spot welding in automotive industry. Measurement 41:412–423. CrossRefGoogle Scholar
  93. 93.
    Palacíos AMG (2010) Uso de técnicas de termografia para detecção de discontinuidades no processo GTAW através do monitoramento da poça de fusão. Master thesis in mechatronic systems, Universidad de BrasíliaGoogle Scholar
  94. 94.
    Pal K, Pal SK (2011) Monitoring of weld penetration using arc acoustics. Mater Manuf Process 26:684–693. CrossRefGoogle Scholar
  95. 95.
    Cayo EH, Alfaro SCA (2011) Aplicabilidad del monitoreo de emisiones del arco eléctrico para el control de calidad en el proceso MAG-S. Soldag Inspeção 16:341–349. CrossRefGoogle Scholar
  96. 96.
    Hurtado RH, Alfaro SCA, Llanos CH (2012) Discontinuity welding detection using an embedded hardware system. In: ABCM symposium series in mechatronics, pp 879–888Google Scholar
  97. 97.
    Schlichting J, Brauser S, Pepke L et al (2012) Thermographic testing of spot welds. NDT E Int 48:23–29. CrossRefGoogle Scholar
  98. 98.
    Alfaro SCA (2012) Sensors for quality control in welding. Soldag Inspeção 17:192–200. CrossRefGoogle Scholar
  99. 99.
    Chokkalingham S, Chandrasekhar N, Vasudevan M (2012) Predicting the depth of penetration and weld bead width from the infra red thermal image of the weld pool using artificial neural network modeling. J Intell Manuf 23:1995–2001. CrossRefGoogle Scholar
  100. 100.
    Subashini L, Vasudevan M (2012) Adaptive neuro-fuzzy inference system (ANFIS)-based models for predicting the weld bead width and depth of penetration from the infrared thermal image of the weld pool. Metall Mater Trans B 43:145–154. CrossRefGoogle Scholar
  101. 101.
    Alfaro SCA, Cayo EH (2012) Sensoring fusion data from the optic and acoustic emissions of electric arcs in the GMAW-S process for welding quality assessment. Sensors (Switzerland) 12:6953–6966. CrossRefGoogle Scholar
  102. 102.
    Chen Z, Gao X (2014) Detection of weld pool width using infrared imaging during high-power fiber laser welding of type 304 austenitic stainless steel. Int J Adv Manuf Technol 74:1247–1254. CrossRefGoogle Scholar
  103. 103.
    Alfaro SCA, Vargas JAR, De CG, de Souza GG (2015) Characterization of Humping in the GTA welding process using infrared images. J Mater Process Technol 223:216–224. CrossRefGoogle Scholar
  104. 104.
    Chandrasekhar N, Vasudevan M, Bhaduri AK, Jayakumar T (2015) Intelligent modeling for estimating weld bead width and depth of penetration from infra-red thermal images of the weld pool. J Intell Manuf 26:59–71. CrossRefGoogle Scholar
  105. 105.
    Llanos CH, Hurtado RH, Alfaro SCA (2016) FPGA-based approach for change detection in GTAW welding process. J Braz Soc Mech Sci Eng 38:913–929. CrossRefGoogle Scholar
  106. 106.
    HKS Prozesstechnik (2017) ThermoProfilScanner. In: HKS ProzessTechnik. Accessed 18 Mar 2017
  107. 107.
    Song JB, Hardt DE (1991) Multivariable adaptive control of bead geometry in GMA welding. In: ASME WAM symposium on weldingGoogle Scholar
  108. 108.
    Renwick RJ, Richardson RW (1983) Experimental investigation of GTA weld pool oscillations. Weld J 62:29s–35sGoogle Scholar
  109. 109.
    Yoo CD (1990) Effects of weld pool conditions on pool oscillation. The Ohio State University, ColumbusGoogle Scholar
  110. 110.
    Yoo CD (1993) Experimental study on sensitivity and signal characteristics of weld pool oscillation. Trans Jpn Weld Soc 24:54–62Google Scholar
  111. 111.
    Hardt DE, Katz JM (1984) Ultrasonic measurement of weld penetration. Weld J 63:273–281Google Scholar
  112. 112.
    Carlson NM, Johnson JA (1988) Ultrasonic sensing of weld pool penetration. Weld J 67:239–246Google Scholar
  113. 113.
    Carlson NM et al (1992) Ultrasonic NDT methods for weld sensing. Mater Eval 50:1338–1343Google Scholar
  114. 114.
    Fenn R (1985) Ultrasonic monitoring and control during arc welding. Weld J 64:18–24Google Scholar
  115. 115.
    Miller M, Mi B, Kita A, Ume IC (2002) Development of automated real-time data acquisition system for robotic weld quality monitoring. Mechatronics 12:1259–1269. CrossRefGoogle Scholar
  116. 116.
    Yang J et al (1994) Ultrasonic weld penetration depth sensing with a laser phased array. In: Proceedings of 1994 ASME international mechanical engineering congress. Manuf Sci Eng 68:245–254Google Scholar
  117. 117.
    Rokhlin SI, Guu AC (1993) A study of arc force, pool depression, and weld penetration during gas tungsten arc welding. Weld J 72:381–390Google Scholar
  118. 118.
    Grad L, Grum J, Polajnar I, Marko J (2004) Feasibility study of acoustic signals for on-line monitoring in short circuit gas metal arc welding. Int J Mach Tools Manuf 44:555–561. CrossRefGoogle Scholar
  119. 119.
    Cayo EH, Alfaro SCA (2009) A non-intrusive GMA welding process quality monitoring system using acoustic sensing. Sensors (Basel) 9:7150–7166. CrossRefGoogle Scholar
  120. 120.
    Van Bohemen SMC, Hermans MJM, den Ouden G (2001) Monitoring of martensite formation during welding by means of acoustic emission. J Phys D Appl Phys 34:3312–3317. CrossRefGoogle Scholar
  121. 121.
    Cayo E (2008) Weld transference modes identification through sound pressure level in GMAW process. J Achiev Mater 29:57–62Google Scholar
  122. 122.
    Rokhlin SI, Cho K, Guu AC (1989) Closed-loop process control of weld penetration using real-time radiography. Mater Eval 47:363–369Google Scholar
  123. 123.
    Guu AC, Rokhlin SI (1989) Computerized radiographic weld penetration control with feedback on weld pool depression. Mater Eval 47:1204–1210Google Scholar
  124. 124.
    Rodriguez-Cobo L, Mirapeix J, Ruiz-Lombera R, et al (2013) Fiber Bragg Grating sensors for on-line welding diagnostics. In: Fifth European workshop on optical fibre sensors, pp 1–4Google Scholar
  125. 125.
    Bestard GA, Alfaro SCA (2015) Sensor fusion: theory review and applications. In: 23rd ABCM international congress of mechanical engineering COBEM 2015, Rio de Janeiro, BrazilGoogle Scholar
  126. 126.
    Henderson TC, Dekhil M, Kessler RR, Griss ML (1998) Sensor fusion. Control Probl Robot Autom (Lectures Notes Control Inf Sci) 230:193–207Google Scholar
  127. 127.
    Santiago Martínez RS (2009) Control y Comportamiento de Robots Omnidireccionales. Posicionamiento y Sensor Data Fusion. PhD thesis, Universidad de la República de MontevideoGoogle Scholar
  128. 128.
    Murata Manufacturing Co. L (2014) SCC1300 combined gyro sensor and accelerometer. Accessed 1 Jan 2017
  129. 129.
    Invensense (2014) MPU-6000/6050: World’s first integrated 3-axis gyro, 3-axis accel and 9-axis motionfusion. In: Inven. Motion. Accessed 3 June 2017
  130. 130.
    Barron Adame JM (2010) Modelado de un sistema de supervisión de la calidad del aire usando técnicas de fusión de sensores y redes neuronales. PhD thesis, Universidad Politécnica de MadridGoogle Scholar
  131. 131.
    Regueiro MA, Viqueira JRR, Stasch C, Taboada JA (2017) Semantic mediation of observation datasets through sensor observation services. Futur Gener Comput Syst 67:47–56. CrossRefGoogle Scholar
  132. 132.
    Castanedo Sotela F (2010) Fusión de Datos Distribuida en Redes de Sensores Visuales Utilizando Sistemas Multi-Agente. PhD thesis, Universidad Carlos III de MadridGoogle Scholar
  133. 133.
    Rodríguez Muñoz P (2003) Aplicación del filtro de Kalman al seguimiento de objetos en secuencias de imágenes. Ph.D. thesis, Universidad Rey Juan CarlosGoogle Scholar
  134. 134.
    Gueziec A (2002) Tracking pitches for broadcast television. Computer (Long Beach Calif) 35:38–43. CrossRefGoogle Scholar
  135. 135.
    Chen B, Chen S (2010) Multi-sensor information fusion in pulsed GTAW based on fuzzy measure and fuzzy integral. Assem Autom 30:276–285. CrossRefGoogle Scholar
  136. 136.
    Bestard GA (2017) Sensor fusion and embedded devices to estimate and control the depth and width of the weld bead in real time. Ph.D. thesis, Universidade de BrasíliaGoogle Scholar
  137. 137.
    Bestard G, Sampaio R, Vargas J, Alfaro S (2018) Sensor fusion to estimate the depth and width of the weld bead in real time in GMAW processes. Sensors 18:962. CrossRefGoogle Scholar
  138. 138.
    Rogalski A (2003) Infrared detectors: status and trends. Prog Quantum Electron 27:59–210. CrossRefGoogle Scholar

Copyright information

© The Brazilian Society of Mechanical Sciences and Engineering 2018

Authors and Affiliations

  1. 1.Postgraduate Program in Mechatronic SystemsUniversity of BrasiliaBrasíliaBrazil
  2. 2.Department of Automatic ControlInstitute of Cybernetics, Mathematics and PhysicsLa HabanaCuba
  3. 3.Department of Mechanical, Mechatronic Engineering, Faculty of TechnologyUniversity of BrasiliaBrasíliaBrazil

Personalised recommendations