Advertisement

Free vibrations of rotationally restrained nonhomogeneous circular beams by means of the Green function

  • L. P. Kiss
  • G. Szeidl
Technical Paper
  • 62 Downloads

Abstract

A one-dimensional linear model is developed to tackle the free vibrations of nonhomogeneous circular beams. The material distribution can depend symmetrically on the cross-sectional coordinates. It can be either continuous (functionally graded materials) or constant in the layers that constitute the beam (multi-layered material). The end supports are identical rotationally restrained pins by means of linear rotational springs. The extensibility of the beam centerline is incorporated into the mechanical model. We determine the Green function matrix of the related problem in closed form. With this in hand, a numerical technique (based on the Fredholm theory) is used to tackle the vibratory problem. Thus, it is possible not only to get the eigenfrequencies but also to find out how the spring stiffness affects the dynamic behavior. Graphical results contribute to the better understanding of the issue.

Keywords

Circular beam Nonhomogeneous material Green function matrix Free vibration Rotational restraint 

References

  1. 1.
    Den Hartog JP (1928) Vibration of frames of electrical machines. Trans Am Soc Mech Eng J Appl Mech 50:1–6Google Scholar
  2. 2.
    Volterra E, Morrel JD (1961) Lowest natural frequency of elastic arc for vibrations outside the plane of initial curvature. J Appl Mech 12:624–627.  https://doi.org/10.1115/1.3641794 MathSciNetCrossRefGoogle Scholar
  3. 3.
    Volterra E, Morrel JD (1961) On the fundamental frequencies of curved beams. Bull Polytech Inst Jassy 7(11):1–2Google Scholar
  4. 4.
    Timoshenko S (1955) Vibration problems in engineering. D. Van Nonstrand, New YorkzbMATHGoogle Scholar
  5. 5.
    Márkus S, Nánási T (1981) Vibration of curved beams. Shock Vib Dig 13(4):3–14.  https://doi.org/10.1177/058310248101300403 CrossRefzbMATHGoogle Scholar
  6. 6.
    Laura PAA, Maurizi MJ (1987) Recent research on vibrations of arch-type structures. Shock Vib Dig 19(1):6–9CrossRefGoogle Scholar
  7. 7.
    Chidamparam P, Leissa AW (1993) Vibrations of planar curved beams, rings and arches. Appl Mech Rev ASME 46(9):467–483.  https://doi.org/10.1115/1.3120374 CrossRefGoogle Scholar
  8. 8.
    Qatu MS, Elsharkawy AA (1993) Vibration of laminated composite arches with deep curvature and arbitrary boundaries. Comput Struct 47(2):305–311.  https://doi.org/10.1016/0045-7949(93)90381-M CrossRefGoogle Scholar
  9. 9.
    Kang K, Bert CW, Striz AG (1995) Vibration analysis of shear deformable circular arches by the differential quadrature method. J Sound Vib 181(2):353–360.  https://doi.org/10.1006/jsvi.1995.0258 CrossRefzbMATHGoogle Scholar
  10. 10.
    Tüfekçi E, Arpaci A (1997) Exact solution of in-plane vibrations of circular arches with account taken of axial extension, transverse shear and rotatory inertia affects. J Sound Vib 209(5):845–856.  https://doi.org/10.1006/jsvi.1997.1290 CrossRefGoogle Scholar
  11. 11.
    Krishnan A, Suresh YJ (1998) A simple cubic linear element for static and free vibration analyses of curved beams. Comput Struct 68:473–489.  https://doi.org/10.1016/S0045-7949(98)00091-1 CrossRefzbMATHGoogle Scholar
  12. 12.
    Huang CS, Nieh KY, Yang MC (2003) In-plane free vibration and stability of loaded and shear-deformable circular arches. Int J Sol Struct 40:5865–5886.  https://doi.org/10.1016/S0020-7683(03)00393-7 CrossRefzbMATHGoogle Scholar
  13. 13.
    Kang B, Riedel CH, Tan CA (2003) Free vibration analysis of planar curved beams by wave propagation. J Sound Vib 260:19–44.  https://doi.org/10.1016/S0022-460X(02)00898-2 CrossRefGoogle Scholar
  14. 14.
    Ecsedi I, Dluhi K (2005) A linear model for the static and dynamic analysis of non-homogeneous curved beams. Appl Math Model 29(12):1211–1231.  https://doi.org/10.1016/j.apm.2005.03.006 CrossRefzbMATHGoogle Scholar
  15. 15.
    Ecsedi I, Baksa A (2012) A note on the pure bending of nonhomogeneous prismatic bars. Int J Mech Eng Educ 37(2):118–129.  https://doi.org/10.7227/IJMEE.37.2.4 Google Scholar
  16. 16.
    Ecsedi I, Gönczi D (2015) Thermoelastic stresses in nonhomogeneous prismatic bars. Ann Fac Eng Hunedoara Int J Eng 13(2):49–52Google Scholar
  17. 17.
    Ecsedi I, Lengyel ÁJ (2015) Curved composite beam with interlayer slip loaded by radial load. Curved Layer Struct 2(1):50–58.  https://doi.org/10.1515/cls-2015-0004 Google Scholar
  18. 18.
    Ozturk H (2011) In-plane free vibration of a pre-stressed curved beam obtained from a large deflected cantilever beam. Finite Elem Anal Des 47:229–236.  https://doi.org/10.1016/j.finel.2010.10.003 CrossRefGoogle Scholar
  19. 19.
    Çalim FF (2012) Forced vibration of curved beams on two-parameter elastic foundation. Appl Math Model 36:964–973.  https://doi.org/10.1016/j.apm.2011.07.066 MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Hajianmaleki M, Qatu MS (2012) Static and vibration analyses of thick, generally laminated deep curved beams with different boundary conditions. Comput Part B Eng 43:1767–1775.  https://doi.org/10.1016/j.compositesb.2012.01.019 CrossRefGoogle Scholar
  21. 21.
    Hajianmaleki M, Qatu MS (2013) Vibrations of straight and curved composite beams: a review. Comput Struct 100:218–232.  https://doi.org/10.1016/j.compstruct.2013.01.001 CrossRefGoogle Scholar
  22. 22.
    Kovács B (2013) Vibration analysis of layered curved arch. J Sound Vib 332:4223–4240.  https://doi.org/10.1007/978-3-642-36691-8_93 CrossRefGoogle Scholar
  23. 23.
    Wu JS, Lin FT, Shaw HJ (2012) Free in-plane vibration analysis of a curved beam (arch) with arbitrary various concentrated elements. Appl Math Model 37:7588–7610.  https://doi.org/10.1016/j.apm.2013.02.029 MathSciNetCrossRefGoogle Scholar
  24. 24.
    Jun L, Guangweia R, Jina P, Xiaobina L, Weiguoa W (2014) Free vibration analysis of a laminated shallow curved beam based on trigonometric shear deformation theory. Mech Bas Des Struct Mach 42(1):111–129.  https://doi.org/10.1080/15397734.2013.846224 CrossRefGoogle Scholar
  25. 25.
    Juna L, Hongxinga H (2009) Variationally consistent higher-order analysis of harmonic vibrations of laminated beams. Mech Bas Des Struct Mach 37(3):229–326.  https://doi.org/10.1080/15397730902932608 Google Scholar
  26. 26.
    Ziane N, Meftah SA, Belhadj HA, Tounsi A, Bedia EAA (2013) Free vibration analysis of thin and thick-walled FGM box beams. Int J Mech Sci 66:273–282.  https://doi.org/10.1016/j.ijmecsci.2012.12.001 CrossRefGoogle Scholar
  27. 27.
    Mashat DS, Carrera E, Zenkour AM, Khateeb SAA, Filippi M (2014) Free vibration of FGM layered beams by various theories and finite elements. Comput Part B 59:269–278.  https://doi.org/10.1016/j.compositesb.2013.12.008 CrossRefGoogle Scholar
  28. 28.
    Pradhan KK, Chakraverty S (2013) Free vibration of Euler and Timoshenko functionally graded beams by Rayleigh–Ritz method. Comput Part B 51:175–184.  https://doi.org/10.1016/j.compositesb.2013.02.027 CrossRefGoogle Scholar
  29. 29.
    Lueschen GGG, Bergman LA, McFarland DM (1996) Green’s functions for uniform Timoshenko beams. J Sound Vib 194(1):93–102.  https://doi.org/10.1006/jsvi.1996.0346 CrossRefGoogle Scholar
  30. 30.
    Foda MA, Abduljabbar Z (1997) A dynamic Green function formulation for the response of a beam structure to a moving mass. J Sound Vib 210(3):295–306.  https://doi.org/10.1006/jsvi.1997.1334 CrossRefGoogle Scholar
  31. 31.
    Kukla S, Zamojska I (2007) Frequency analysis of axially loaded stepped beams by Green’s function method. J Sound Vib 300:1034–1041.  https://doi.org/10.1016/j.jsv.2006.07.047 CrossRefGoogle Scholar
  32. 32.
    Mehri B, Davar A, Rahmani O (2009) Dynamic Green’s function solution of beams under a moving load with different boundary conditions. Sci Iran 16:273–279Google Scholar
  33. 33.
    Failla G, Santini A (2007) On Euler–Bernoulli discontinuous beam solutions via uniform-beam Green’s functions. Int J Sol Struct 44:7666–7687.  https://doi.org/10.1016/j.ijsolstr.2007.05.003 CrossRefzbMATHGoogle Scholar
  34. 34.
    Szeidl G (1975) The effect of change in length on the natural frequencies and stability of circular beams. Ph.D. thesis, Department of Mechanics, University of Miskolc, Hungary (in Hungarian) Google Scholar
  35. 35.
    Szeidl G, Kelemen K, Szeidl Á (1998) Natural frequencies of a circular arch—computations by the use of Green functions. Publ Univ Miskolc Ser D Nat Sci Math 38:117–132MathSciNetzbMATHGoogle Scholar
  36. 36.
    Kelemen K (2000) Vibrations of circular arches subjected to hydrostatic follower loads—computations by the use of the Green functions. J Comput Appl Mech 1(2):167–178zbMATHGoogle Scholar
  37. 37.
    Abu-Hilal M (2003) Forced vibration of Euler–Bernoulli beams by means of dynamic Green functions. J Sound Vib 267:191–207.  https://doi.org/10.1016/S0022-460X(03)00178-0 CrossRefzbMATHGoogle Scholar
  38. 38.
    Li XY, Zhao X, Li YH (2014) Green’s functions of the forced vibration of Timoshenko beams with damping effect. J Sound Vib 333(6):1781–1795.  https://doi.org/10.1016/j.jsv.2013.11.007 CrossRefGoogle Scholar
  39. 39.
    Kiss L, Szeidl G (2015) Vibrations of pinned–pinned heterogeneous circular beams subjected to a radial force at the crown point. Mech Bas Des Struct Mach 43(4):424–449.  https://doi.org/10.1080/15397734.2015.1022659 CrossRefGoogle Scholar
  40. 40.
    Kiss L, Szeidl G, Vlase S, Gálfi BP, Dani P, Munteanu IR, Ionescu RD, Száva J (2014) Vibrations of fixed–fixed heterogeneous curved beams loaded by a central force at the crown point. Int J Eng Model 27(3–4):85–100Google Scholar
  41. 41.
    Kiss LP, Szeidl G (2017) Vibrations of pinned–fixed heterogeneous circular beams pre-loaded by a vertical force at the crown point. J Sound Vib 393:92–113.  https://doi.org/10.1016/j.jsv.2016.12.032 CrossRefGoogle Scholar
  42. 42.
    Wasserman Y (1977) The influence of the behaviour of the load on the frequencies and critical loads of arches with flexibly supported ends. J Sound Vib 54(4):515–526.  https://doi.org/10.1016/0022-460X(77)90609-5 CrossRefzbMATHGoogle Scholar
  43. 43.
    Rajasekaran S (2013) Static, stability and free vibration analysis of arches using a new differential transformation-based arch element. Int J Mech Sci 77:82–97.  https://doi.org/10.1016/j.ijmecsci.2013.09.012 CrossRefGoogle Scholar
  44. 44.
    Kiss LP (2015) Vibrations and stability of heterogeneous curved beams. Ph.D. thesis, Institute of Applied Mechanics, University of Miskolc, Hungary  https://doi.org/10.14750/ME.2016.008
  45. 45.
    Chidamparam P, Leissa AW (1995) Influence of centerline extensibility on the in-plane free vibrations of loaded circular arches. J Sound Vib 183(5):779–795.  https://doi.org/10.1006/jsvi.1995.0286 CrossRefzbMATHGoogle Scholar
  46. 46.
    Simitses GJ, Hodges DH (2006) Fundamentals of structural stability. Elsevier and Butterworth-Heinemann, OxfordzbMATHGoogle Scholar
  47. 47.
    Kiss LP (2017) Green’s functions for nonhomogenous curved beams with applications to vibration problems. J Comput Appl Mech 12(1):21–43Google Scholar

Copyright information

© The Brazilian Society of Mechanical Sciences and Engineering 2018

Authors and Affiliations

  1. 1.Institute of Applied MechanicsUniversity of MiskolcMiskolc-EgyetemvárosHungary

Personalised recommendations