Advertisement

Effect of using SiC powder-added dielectric media during electro-discharge machining of Inconel 718 superalloys

  • Santosh Kumar Sahu
  • Thrinadh Jadam
  • Saurav Datta
  • Goutam Nandi
Technical Paper
  • 145 Downloads

Abstract

Inconel 718 is a nickel-based superalloy widely applied in aerospace, automotive and defense applications. Low thermal conductivity, extreme high temperature strength, high work-hardening characteristics make them ‘difficult-to-machine.’ In order to improve EDM performance on Inconel 718, powder-mixed electro-discharge machining is reported herein. PMEDM is carried out by mixing SiC powder in the dielectric media in consideration with varied peak discharge current. As compared to conventional EDM, the morphology and topographical features of the machined surface including surface roughness, crack density, white layer thickness, metallurgical aspects (phase transformation, crystallite size, micro-strain and dislocation density), material migration, residual stress as well as micro-indentation hardness, etc., are studied. Additionally, effects of peak discharge on PMEDM performance features, namely material removal rate, tool wear rate, surface roughness, surface crack density, white layer thickness, are discussed and compared with conventional EDM.

Keywords

Inconel 718 Superalloy Powder-mixed electro-discharge machining 

Notes

Acknowledgements

Authors gratefully acknowledge the support rendered by Dr. Francisco Ricardo Cunha, Editor-In-Chief, Journal of the Brazilian Society of Mechanical Sciences and Engineering (BMSE). Special thank goes to the anonymous reviewers for their valuable constructive comments and suggestions to prepare the paper a good contributor.

References

  1. 1.
    Al-Khazraji A, Amin SA, Ali SM (2016) The effect of SiC powder mixing electrical discharge machining on white layer thickness, heat flux and fatigue life of AISI D2 die steel. Eng Sci Technol Int J 19:1400–1415CrossRefGoogle Scholar
  2. 2.
    Bai X, Zhang Q-H, Yang T-Y, Zhang J-H (2013) Research on material removal rate of powder mixed near dry electrical discharge machining. Int J Adv Manuf Technol 68(5):1757–1766CrossRefGoogle Scholar
  3. 3.
    Baseri H, Sadeghian S (2016) Effects of nanopowder TiO2-mixed dielectric and rotary tool on EDM. Int J Adv Manuf Technol 83(1):519–528CrossRefGoogle Scholar
  4. 4.
    Batish A, Bhattacharya A, Kumar N (2015) Powder mixed dielectric: an approach for improved process performance in EDM. Part Sci Technol 33(2):150–158CrossRefGoogle Scholar
  5. 5.
    Bhattacharya A, Batish A, Singh G, Singla VK (2012) Optimal parameter settings for rough and finish machining of die steels in powder-mixed EDM. Int J Adv Manuf Technol 61(5):537–548CrossRefGoogle Scholar
  6. 6.
    Chow HM, Yan BH, Huang FY, Hung JC (2000) Study of added powder in kerosene for the micro-slit machining of Titanium alloy using electro-discharge machining. J Mater Process Technol 101(1–3):95–103CrossRefGoogle Scholar
  7. 7.
    Ekmekci N, Ekmekci B (2016) Electrical discharge machining of Ti–6Al–4V in hydroxyapatite powder mixed dielectric liquid. Mater Manuf Processes 31(13):1663–1670CrossRefGoogle Scholar
  8. 8.
    Ezugwu EO, Wang ZM, Machado AR (1999) The machinability of nickel-based alloys: a review. J Mater Process Technol 86(1):1–16CrossRefGoogle Scholar
  9. 9.
    Furutania K, Saneto A, Takezawa H, Mohri N, Miyake H (2001) Accretion of titanium carbide by electrical discharge machining with powder suspended in working fluid. Precis Eng 25(2):138–144CrossRefGoogle Scholar
  10. 10.
    Jahan MP, Rahman M, Wong YS (2010) Modelling and experimental investigation on the effect of nanopowder-mixed dielectric in micro-electrodischarge machining of tungsten carbide. Proc IMechE B J Eng Manuf 224(11):1725–1739CrossRefGoogle Scholar
  11. 11.
    Jahan MP, Rahman M, Wong YS (2011) Study on the nano-powder-mixed sinking and milling micro-EDM of WC-Co. Int J Adv Manuf Technol 53(1):167–180CrossRefGoogle Scholar
  12. 12.
    Kansal HK, Singh S, Kumar P (2005) Parametric optimization of powder mixed electrical discharge machining by response surface methodology. J Mater Process Technol 169(3):427–436CrossRefGoogle Scholar
  13. 13.
    Kitagawa T, Kubo A, Maekawa K (1997) Temperature and wear of cutting tools in high-speed machining of Inconel 718 and Ti–6Al–6V–2Sn. Wear 202(2):142–148CrossRefGoogle Scholar
  14. 14.
    Kolli M, Kumar A (2014) Effect of boron carbide powder mixed into dielectric fluid on electrical discharge machining of titanium alloy. Proc Mater Sci 5:1957–1965CrossRefGoogle Scholar
  15. 15.
    Kozak J, Rozenek M, Dabrowski L (2004) Study of electrical discharge machining using powder-suspended working media. Proc Inst Mech Eng B J Eng Manuf 217(11):1597–1602CrossRefGoogle Scholar
  16. 16.
    Kumar H (2015) Development of mirror like surface characteristics using nano powder mixed electric discharge machining (NPMEDM). Int J Adv Manuf Technol 76(1):105–113CrossRefGoogle Scholar
  17. 17.
    Kumar S, Batra U (2012) Surface modification of die steel materials by EDM method using tungsten powder-mixed dielectric. J Manuf Processes 14(1):35–40CrossRefGoogle Scholar
  18. 18.
    Kung K-Y, Horng J-T, Chiang K-T (2009) Material removal rate and electrode wear ratio study on the powder mixed electrical discharge machining of cobalt-bonded tungsten carbide. Int J Adv Manuf Technol 40(1):95–104CrossRefGoogle Scholar
  19. 19.
    Kuriachen B, Mathew J (2016) Effect of powder mixed dielectric on material removal and surface modification in microelectric discharge machining of Ti–6Al–4V. Mater Manuf Processes 31(4):439–446CrossRefGoogle Scholar
  20. 20.
    Li L, He N, Wang M, Wang ZG (2002) High speed cutting of Inconel 718 with coated carbide and ceramic inserts. J Mater Process Technol 129(1):127–130CrossRefGoogle Scholar
  21. 21.
    Li L, Zhao L, Li ZY, Feng L, Bai X (2017) Surface characteristics of Ti–6Al–4V by SiC abrasive-mixed EDM with magnetic stirring. Mater Manuf Processes 32(1):83–86CrossRefGoogle Scholar
  22. 22.
    Mai C, Hocheng H, Huang S (2012) Advantages of carbon nanotubes in electrical discharge machining. Int J Adv Manuf Technol 59(1):111–117CrossRefGoogle Scholar
  23. 23.
    Peças P, Henriques E (2008) Electrical discharge machining using simple and powder-mixed dielectric: the effect of the electrode area in the surface roughness and topography. J Mater Process Technol 200(1–3):250–258CrossRefGoogle Scholar
  24. 24.
    Peças P, Henriques E (2008) Effect of the powder concentration and dielectric flow in the surface morphology in electrical discharge machining with powder-mixed dielectric (PMD-EDM). Int J Adv Manuf Technol 37(11):1120–1132CrossRefGoogle Scholar
  25. 25.
    Ping DH, Gu YF, Cui CY, Harada H (2007) Grain boundary segregation in a Ni–Fe-based (Alloy 718) super alloy. Mater Sci Eng A 456(1):99–102CrossRefGoogle Scholar
  26. 26.
    Prabhu S, Vinayagam BK (2016) Optimization of carbon nanotube based electrical discharge machining parameters using full factorial design and genetic algorithm. Aust J Mech Eng 14(3):161–173CrossRefGoogle Scholar
  27. 27.
    Prakash C, Kansal HK, Pabla BS, Puri S (2017) Experimental investigations in powder mixed electric discharge machining of Ti–35Nb–7Ta–5Zrβ-titanium alloy. Mater Manuf Processes 32(3):274–285CrossRefGoogle Scholar
  28. 28.
    Prihandana GS, Sriani T, Mahardika M, Hamdi M, Miki N, Wong YS, Mitsui K (2014) Application of powder suspended in dielectric fluid for fine finish micro-EDM of Inconel 718. Int J Adv Manuf Technol 75(1):599–613CrossRefGoogle Scholar
  29. 29.
    Rahman M, Seah WKH, Teo TT (1997) The machinability of Inconel 718. J Mater Process Technol 63(1–3):199–204CrossRefGoogle Scholar
  30. 30.
    Rahul, Datta S, Biswal BB, Mahapatra SS (2017) A novel satisfaction function and distance based approach for machining performance optimization during electro-discharge machining on super alloy Inconel 718. Arab J Sci Eng 42(5):1999–2020CrossRefGoogle Scholar
  31. 31.
    Razak MA, Abdul-Rani AM, Nanimina AM (2015) Improving EDM efficiency with silicon carbide powder-mixed dielectric fluid. Int J Mater Mech Manuf 3(1):40–43Google Scholar
  32. 32.
    Sari MM, Noordin MY, Brusa E (2012) Evaluating the electrical discharge machining (EDM) parameters with using carbon nanotubes. IOP Conf Ser Mater Sci Eng 40:012019.  https://doi.org/10.1088/1757-899X/40/1/012019 (International Conference on Structural Nano Composites, NANOSTRUC 2012) CrossRefGoogle Scholar
  33. 33.
    Sharman A, Dewes RC, Aspinwall DK (2001) Tool life when high speed ball nose end milling Inconel 718™. J Mater Process Technol 118(1):29–35CrossRefGoogle Scholar
  34. 34.
    Sharman ARC, Hughes JI, Ridgway K (2004) Workpiece surface integrity and tool life issues when turning Inconel 718™ nickel based super alloy. Mach Sci Technol 8(3):399–414CrossRefGoogle Scholar
  35. 35.
    Singh AK, Kumar S, Singh VP (2015) Effect of the addition of conductive powder in dielectric on the surface properties of super alloy Super Co 605 by EDM process. Int J Adv Manuf Technol 77(1):99–106CrossRefGoogle Scholar
  36. 36.
    Singh B, Kumar J, Kumar S (2015) Influences of process parameters on MRR improvement in simple and powder-mixed EDM of AA6061/10%SiC composite. Mater Manuf Processes 30(3):303–312CrossRefGoogle Scholar
  37. 37.
    Singh S, Yeh MF (2012) Optimization of abrasive powder mixed EDM of Aluminum matrix composites with multiple responses using gray relational analysis. J Mater Eng Perform 21(4):481–491CrossRefGoogle Scholar
  38. 38.
    Talla G, Gangopadhyay S (2016) Effect of impregnated powder materials on surface integrity aspects of Inconel 625 during electrical discharge machining. Proc IMechE B J Eng Manuf.  https://doi.org/10.1177/0954405416666904 Google Scholar
  39. 39.
    Thomas A, El-Wahabi M, Cabrera JM, Prado JM (2006) High temperature deformation of Inconel 718. J Mater Process Technol 177(1):469–472CrossRefGoogle Scholar
  40. 40.
    Tzeng Y-F, Chen F-C (2005) Investigation into some surface characteristics of electrical discharge machined SKD-11 using powder-suspension dielectric oil. J Mater Process Technol 170(1):385–391Google Scholar
  41. 41.
    Tzeng YF, Lee CY (2001) Effects of powder characteristics on electro discharge machining efficiency. Int J Adv Manuf Technol 17(8):586–592CrossRefGoogle Scholar
  42. 42.
    Upadhyay C, Datta S, Masanta M, Mahapatra SS (2016) An experimental investigation emphasizing surface characteristics of electro-discharge machined Inconel 601. J Braz Soc Mech Sci Eng.  https://doi.org/10.1007/s40430-016-0643-2 Google Scholar
  43. 43.
    Wong YS, Lin LC, Rahuman I, Tee WM (1998) Near-mirror-finish phenomenon in EDM using powder-mixed dielectric. J Mater Process Technol 79(1–3):30–40CrossRefGoogle Scholar
  44. 44.
    Zhao WS, Meng QG, Wang ZL (2002) The application of research on powder mixed EDM in rough machining. J Mater Process Technol 129(1–3):30–33CrossRefGoogle Scholar

Copyright information

© The Brazilian Society of Mechanical Sciences and Engineering 2018

Authors and Affiliations

  • Santosh Kumar Sahu
    • 1
  • Thrinadh Jadam
    • 2
  • Saurav Datta
    • 2
  • Goutam Nandi
    • 1
  1. 1.Department of Mechanical EngineeringJadavpur UniversityKolkataIndia
  2. 2.Department of Mechanical EngineeringNational Institute of TechnologyRourkelaIndia

Personalised recommendations