MCF-7 cancer cell apparent properties and viscoelastic characteristics measurement using AFM

  • Moharram Habibnejad Korayem
  • Y. H. Sooha
  • Z. RastegarEmail author
Technical Paper


Investigations on mechanical properties of biological cells especially cancer cells can considerably help recognizing various types of cancers. In this paper, we have concentrated on finding mechanical properties of breast cancer cell (MCF-7), elastic and viscoelastic, using atomic force microscopy. Initially, topography and apparent properties of the MCF-7 cell are studied, then the results are analyzed and compared with the literature to ensure the validity. After accurate diagnosis of MCF-7 cells, force–indentation curves for thirty-one cells, each in three different points, are obtained and the elasticity module of each point is calculated using Hertz and Dimitriadis theories. To ensure about the accuracy of experimental data, some statistical analysis is done to extract distribution functions for elasticity module of each theory. Due to the importance of adhesion force in the friction force, the purpose of this section is to determine adhesion changes in different points of the cell. In the next step, spring and viscosity force gradients and consequently stiffness and viscosity in different indentation depths are measured and finally appropriate creep function is extracted for viscoelastic behavior of MCF-7 using the Kelvin–Voigt model.


Cancer Atomic force microscopy Mechanical properties Elastic properties Viscoelastic properties Elasticity module Adhesion Creep function 


  1. 1.
    Rodriguez ML, McGarry PJ, Sniadecki NJ (2013) Review on cell mechanics: experimental and modeling approaches. Appl Mech Rev 65:e060801CrossRefGoogle Scholar
  2. 2.
    Korayem MH, Khaksar H, Taheri M (2013) Modeling of contact theories for the manipulation of biological micro/nanoparticles in the form of circular crowned rollers based on the atomic force microscope. J Appl Phys 114:1–13CrossRefGoogle Scholar
  3. 3.
    Weisenhorn AL, Khorsandi M, Kasas S, Gotzos V, Butt HJ (1993) Deformation and height anomaly of soft surfaces studied with an AFM. Nanotechnology 4:106–113CrossRefGoogle Scholar
  4. 4.
    Vinckier A, Semenza G (1998) Measuring elasticity of biological materials by atomic force microscopy. FEBS Lett 430:12–16CrossRefGoogle Scholar
  5. 5.
    Ikai A, Afrin R, Sekiguchi H, Okajima T, Alam MT (2003) Nano-mechanical methods in biochemistry using atomic force microscopy. Curr Nanosci 4:181–193Google Scholar
  6. 6.
    Park S, Lee YJ (2013) Nano-mechanical compliance of Müller cells investigated by atomic force microscopy. Int J Biol Sci 9:546–554CrossRefGoogle Scholar
  7. 7.
    Louey MD, Mulvaney P, Tewart PJS (2001) Characterization of adhesional properties of lactose carriers using atomic force microscopy. J Pharm Biomed Anal 25:559–567CrossRefGoogle Scholar
  8. 8.
    Kasas S, Longo G, Dietler G (2013) Mechanical properties of biological specimens explored by atomic force microscopy. J Phys D Appl Phys 46:1–12CrossRefGoogle Scholar
  9. 9.
    Li M, Liu L, Xi N, Wang Y, Dong Z, Xiao X, Zhang W (2012) Atomic force microscopy imaging and mechanical properties measurement of red blood cells and aggressive cancer cells. Sci China Life Sci 55:968–973CrossRefGoogle Scholar
  10. 10.
    Li QS, Lee GYH, Ong CN, Lim CT (2008) AFM indentation study of breast cancer cells. Biochem Biophys Res Commun 374:609–613CrossRefGoogle Scholar
  11. 11.
    Faria EC, Ma N, Gazi E, Gardner P, Brown M, Clarke NW, Snook RD (2008) Measurement of elastic properties of prostate cancer cells using AFM. Analyst 133:1498–1500CrossRefGoogle Scholar
  12. 12.
    Hui CY, Baney JM (1998) Contact mechanics and adhesion of viscoelastic spheres. Langmuir 14:6570–6578CrossRefGoogle Scholar
  13. 13.
    Cartagena A, Raman A (2014) Local viscoelastic properties of live cells investigated using dynamic and quasi static atomic force microscopy methods. Biophysical 106:1033–1043CrossRefGoogle Scholar
  14. 14.
    Zhai M, McKenna GB (2014) Viscoelastic modeling of nano-indentation experiments: a multi-curve method. J Polym Sci Part 52:633–639CrossRefGoogle Scholar
  15. 15.
    Siamantouras E, Hills E, Squires PE, Liu K (2014) Nano-mechanical investigation of soft biological cell adhesion using atomic force microscopy. Cell Mol Bioeng 8:22–31CrossRefGoogle Scholar
  16. 16.
    Puech H, Taubenberger A, Ulrich F, Krieg M, Muller DJ, Heisenberg CP (2005) Measuring cell adhesion forces of primary gastrulating cells from zebra-fish using atomic force microscopy. J Cell Sci 118:4199–4206CrossRefGoogle Scholar
  17. 17.
    Hertz H (1881) Über die Berührung fester elastischer Körper. Journal für die reine und angewandte Mathematik 92:156–171zbMATHGoogle Scholar
  18. 18.
    Dimitriadis EK, Horkay F, Maresca J, Kachar B, Chadwick RS (2002) Determination of elastic moduli of thin layers of soft material using the atomic force microscope. Biophys J 82:2798–2810CrossRefGoogle Scholar
  19. 19.
    Stegemann B, Backhaus H, Kloss H, Santner E (2007) Spherical AFM probes for adhesion force measurements on metal single crystals. Mod Res Educ Top Microsc 64:820–827Google Scholar
  20. 20.
    Çolak A (2013) Measuring adhesion forces between hydrophilic surfaces with atomic force microscopy using flat tips. University of Twente, Enschede. CrossRefGoogle Scholar
  21. 21.
    Geltmeier A, Rinner B, Bade D, Meditz K, Witt R, Bicker U, Bludszuweit Philipp C, Maier P (2015) Characterization of dynamic behavior of MCF7 and MCF10A cells in ultrasonic field using modal and harmonic analyses. PLoS ONE 10:e0134999CrossRefGoogle Scholar

Copyright information

© The Brazilian Society of Mechanical Sciences and Engineering 2018

Authors and Affiliations

  1. 1.Robotic Research Laboratory, Center of Excellence in Experimental Solid Mechanics and Dynamics, School of Mechanical EngineeringIran University of Science and TechnologyTehranIran

Personalised recommendations