The chloroplast genome of Hancornia speciosa Gomes: structural organization and phylogenomic studies in Rauvolfioideae (Apocynaceae)

  • Elvia Jéssica da Silva Oliveira
  • Andre Marques
  • Cícero AlmeidaEmail author
Original Article


The chloroplast genomes have been utilized in many studies of evolution, population structure and molecular identification. The aim of this study was to assemble the chloroplast genome of Hancornia speciosa Gomes, an economically important fruit species from Brazil, using next-generation sequencing data in order to reconstruct the phylogenetic analysis of Rauvolfioideae. Twenty-four million Illumina short paired-end reads were used for de novo assembly, and the chloroplast contig was identified by BLAST. The chloroplast genome of H. speciosa contains 155,357 bp, with 25,755 bp of inverted repeat A, 25,654 bp of inverted repeat B, 85,702 bp of large single copy and 18,229 bp of small single copy. The coding regions contained 83 genes, eight rRNAs and 36 tRNAs. The phylogenomic analysis reported similar topologies as in previous studies, which used partial chloroplast genomes, and demonstrated that Rauvolfioideae is paraphyletic. In summary, we demonstrated: (1) the first complete chloroplast genome of H. speciosa; (2) phylogenies analyzed using the complete chloroplast genomes revealed a robust phylogenetic topology for Rauvolfioideae; and (3) the phylogenetic analysis showed that the subfamily Rauvolfioideae is paraphyletic.


Evolution Mangaba Plastome 



We would like to thank the Federal University of Alagoas for the laboratories and scientific support, the Fundação de Apoio à Pesquisa de Alagoas (FAPEAL) for funding this Project, and the National Council for the Improvement of Higher Education (CAPES).

Author contributions

EJSO performed the DNA library, de novo assembles. AM and CA analyzed data and wrote the manuscript.

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflicts of interest.

Supplementary material

40415_2019_549_MOESM1_ESM.tiff (33 mb)
Fig. S1 Molecular phylogenetic analysis by the maximum likelihood method, with supported values estimated by bootstrap. (A) Phylogenetic tree using complete chloroplast genome and rcbL gene; (B) Phylogenetic tree using complete chloroplast genome and rcbL + matK genes; (C) Phylogenetic tree using complete chloroplast genome and rcbL + matK + trnH-psbA (TIFF 33,752 kb)


  1. Alikhan NF, Petty NK, Ben Zakour NL, Beatson SA (2011) BLAST Ring Image Generator (BRIG): simple prokaryote genome comparisons. BMC Genom 12:402. CrossRefGoogle Scholar
  2. Barrett CF, Baker WJ, Comer JR, Conran JG, Lahmeyer SC, Leebens-Mack JH, Li J, Lim GS, Mayfield-Jones DR, Perez L et al (2016) Plastid genomes reveal support for deep phylogenetic relationships and extensive rate variation among palms and other commelinid monocots. New Phytol 209:855–870. CrossRefGoogle Scholar
  3. Boisvert S, Raymond F, Godzaridis E, Laviolette F, Corbeil J (2012) Ray Meta: scalable de novo metagenome assembly and profiling. Genome Biol 22:1–13. Google Scholar
  4. Chaitankar V, Karakülah G, Ratnapriya R, Giuste FO, Brooks MJ, Swaroop A (2016) Next generation sequencing technology and genomewide data analysis: perspectives for retinal research. Prog Retin Eye Res 55:1–3. CrossRefGoogle Scholar
  5. Chen Z, Grover CE, Li P, Wang Y, Nie H, Zhao Y, Ang M, Liu F, Zhou Z, Wang X, Cai X, Wang K, Wendel JF, Hua J (2017) Molecular evolution of the plastid genome during diversification of the cotton genus. Mol Phylogenet Evol 112:268–276. CrossRefGoogle Scholar
  6. Collevatti RG, Rodrigues EE, Vitorino LC, Lima-Ribeiro MS, Chaves LJ, Telles MPC (2018) Unravelling the genetic differentiation among varieties of the Neotropical savanna tree Hancornia speciosa Gomes. Ann Bot 122:973–984. Google Scholar
  7. Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15Google Scholar
  8. Fishbein M, Livshultz T, Straub SCK, Simões AO, Boutte J, McDonnell A, Foote A (2018) Evolution on the backbone: Apocynaceae phylogenomics and new perspectives on growth forms, flowers, and fruits. Am J Bot 105:495–513. CrossRefGoogle Scholar
  9. Green BR (2011) Chloroplast genomes of photosynthetic eukaryotes. Plant J 66:34–44. CrossRefGoogle Scholar
  10. Huang YY, Matzke AJM, Matzke M (2013) Complete sequence and comparative analysis of the chloroplast genome of coconut palm (Cocos nucifera). PLoS ONE 8:1–12. Google Scholar
  11. Jo S, Kim HW, Kim YK, Cheon S-H, Kim KJ (2017) The complete plastome sequence of Carissa macrocarpa (Eckl.) A. DC. (Apocynaceae). Mitochondrial DNA Part B 2:26–28. CrossRefGoogle Scholar
  12. Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780. CrossRefGoogle Scholar
  13. Ku C, Chung WC, Chen LL, Kuo CH (2013) The complete plastid genome sequence of Madagascar periwinkle Catharanthus roseus (L.) G. Don: plastid genome evolution, molecular marker identification, and phylogenetic implications in asterids. PLoS ONE 8:1–11. Google Scholar
  14. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874. CrossRefGoogle Scholar
  15. Lahaye R, Klackenberg J, Källersjö M, Campo EV, Civeyrel L (2007) Phylogenetic relationships between derived Apocynaceae s.l. and within Secamonoideae based on chloroplast sequences. Ann Missouri Bot Gard 94:376–391CrossRefGoogle Scholar
  16. Liu C, Shi L, Zhu Y, Chen H, Zhang J, Lin X, Guan X (2012) CpGAVAS, an integrated web server for the annotation, visualization, analysis, and GenBank submission of completely sequenced chloroplast genome sequences. BMC Genom 13:715. CrossRefGoogle Scholar
  17. Livshultz T (2010) The phylogenetic position of milkweeds (Apocynaceae subfamilies Secamonoideae and Asclepiadoideae): evidence from the nucleus and chloroplast. Taxon 59:1016–1030CrossRefGoogle Scholar
  18. Livshultz T, Middleton DJ, Endress ME, Williams JK (2007) Phylogeny of Apocynoideae and the Apsa clade (Apocynaceae S.L.)1. Ann Missouri Bot Gard 94:324–359.;2 CrossRefGoogle Scholar
  19. Ollerton J, Liede-Schumann S, Endress ME, Meve U, Rech AR, Shuttleworth A, Keller HA, Fishbein M, Alvarado-Cárdenas LO, Amorim FW et al (2018) The diversity and evolution of pollination systems in large plant clades: Apocynaceae as a case study. Ann Bot. Google Scholar
  20. Park S, Ruhlman TA, Sabir JSM, Mutwakil MHZ, Baeshen MN, Sabir MJ, Baeshen NA, Jansen RK (2014) Complete sequences of organelle genomes from the medicinal plant Rhazya stricta (Apocynaceae) and contrasting patterns of mitochondrial genome evolution across asterids. BMC Genom 15:1–18. Google Scholar
  21. Ravi V, Khurana JP, Tyagy AK, Khurana P (2008) An update on chloroplast genomes. Plant Syst Evol 271:101–122. CrossRefGoogle Scholar
  22. Silva-Júnior JF, Lêdo AS (2006) A cultura da mangaba. Embrapa Tabuleiros Costeiros, Aracaju, p 253Google Scholar
  23. Silva AVC, Santos ARF, Wickert E, Silva Júnior JF, Costa TS (2011) Divergência genética entre acessos de mangabeira (Hancornia speciosa Gomes). Revista Brasileira de Ciências Agrárias 6:572–578CrossRefGoogle Scholar
  24. Simões AO, Livshultz T, Conti E, Mary E (2007) Phylogeny and systematics of the Rauvolfioideae (Apocynaceae) based on molecular and morphological evidence. Ann Missouri Bot Gard 94:268–297CrossRefGoogle Scholar
  25. Simões AO, Kinoshita LS, Koch I, Silva MJ, Endress ME (2016) Systematics and character evolution of Vinceae (Apocynaceae). Taxon 65:99–122. CrossRefGoogle Scholar

Copyright information

© Botanical Society of Sao Paulo 2019

Authors and Affiliations

  1. 1.Laboratory of Genetics Resources, Campus de ArapiracaUniversidade Federal de AlagoasArapiracaBrazil

Personalised recommendations