Brazilian Journal of Botany

, Volume 42, Issue 1, pp 135–147 | Cite as

Comparative anatomical investigation of five Artemisia L. (Anthemideae, Asteraceae) species in view of taxonomy

  • Pedja JanaćkovićEmail author
  • Milan Gavrilović
  • Dragana Rančić
  • Zora Dajić-Stevanović
  • Abdulhmid A. Giweli
  • Petar D. Marin
Original Article


Comparative anatomical analysis of vegetative organs has been conducted on Artemisia campestris L., A. absinthium L., A. arborescens L., A. judaica L. and A. herba-alba Asso, using light microscopy, in order to examine the most important anatomical features and to find new valid taxonomic characters. Results have shown that general root, stem and leaf anatomical features and nonglandular and glandular trichomes are shared by all species. However, some characters (parenchyma sheath, which surrounded vascular bundle and extended to both epidermises, subepidermal collenchyma and the absence of secretory canals in the leaves) link together A. absinthium and A. arborescens from the same section. Some characters, as periderm and lignified pith parenchyma cells (A. campestris and A. arborescens), nonendodermal secretory canals in root cortex (A. absinthium and A. judaica) and secretory canals in the leaf phloem (A. judaica and A. herba-alba), connect species belonging to different sections. Moreover, some characters could be considered as species-specific, nonendodermal secretory canals in the root secondary phloem, triangular leaf shape on the cross section and secretory canals in the leaf parenchyma for A. campestris, secretory canals in the stem pith for A. absinthium, crystals in the pith parenchyma cells for A. arborescens and the absence of root secretory canals for A. herba-alba. Given results revealed qualitative characters, on the basis of which the studied species are anatomically distinguishable between each other, provide valuable features for better species identification and contribute to the anatomy of the genus Artemisia.


Leaf Root Secretory canals Stem Trichomes 



The authors thank to the Ministry of Education, Science and Technological Development of the Republic of Serbia for financial support (Grant No. 173029). Also, many thanks to Radenko Radošević, technical associate, from Faculty of Agriculture, University of Belgrade, for technical assistance in anatomical laboratory.

Author contributions

PJ, MG and AAG conducted the field work. PJ, MG and DR conducted anatomical analysis. PJ, MG and DR wrote the manuscript. PJ, ZDS and PDM supervised the research and gave comments to the manuscript. All authors read and approved the final version of the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Anderson LC, Creech JB (1975) Comparative leaf anatomy of Solidago and related Asteraceae. Am J Bot 62:486–493CrossRefGoogle Scholar
  2. Andreucci AC, Ciccarelli D, Desideri I, Pagni AM (2008) Glandular hairs and secretory ducts of Matricaria chamomilla (Asteraceae): morphology and histochemistry. Ann Bot Fenn 45:11–18CrossRefGoogle Scholar
  3. Ascensão L, Pais MSS (1987) Glandular trichomes of Artemisia campestris (ssp. maritima): ontogeny and histochemistry of the secretory product. Bot Gaz 148:221–227CrossRefGoogle Scholar
  4. Ascensão L, Pais MS (1988) Ultrastructure and histochemistry of secretory ducts in Artemisia campestris ssp. maritima (Compositae). Nord J Bot 8:283–292CrossRefGoogle Scholar
  5. Ascensão L, Da Silva JAT, Barroso JG, Figueiredo AC, Pedro LG (2001) Glandular trichomes and essential oils of Helichrysum stoechas. Isr J Plant Sci 49:115–122CrossRefGoogle Scholar
  6. Bakr RO (2014) Microscopical and phytochemical investigation of Egyptian Artemisia judaica L. var. sinaitica Tackholm and its free radical scavenging activity. Int J Pharmacogn Phytochem Res 6:698–703Google Scholar
  7. Bartoli A, Galati BG, Tortosa RD (2011) Anatomical studies of the secretory structures: glandular trichomes and ducts, in Grindelia pulchella Dunal (Astereae, Asteraceae). Flora 206:1063–1068CrossRefGoogle Scholar
  8. Bercu R, Broască L (2012) Histoanatomical features of Artemisia alba subsp. saxatilis (Willd.) P. Fourn. Ann Rom Soc Cell Biol 17:278–283Google Scholar
  9. Botha CEJ, Evert RF (1981) Studies on Artemisia afra Jacq.: the phloem in stem and leaf. Protoplasma 109:217–231CrossRefGoogle Scholar
  10. Camilotti JG, Biu CC, Farago PV, Pereira dos Santos VL, Franco CRC, Budel JM (2014) Anatomical characters of leave and stem of Calea serrata Less., Asteraceae. Braz Arch Biol Techn 57:867–873CrossRefGoogle Scholar
  11. Carlquist S (1958) Structure and ontogeny of glandular trichomes of Madinae (Compositae). Am J Bot 45:675–682CrossRefGoogle Scholar
  12. Carlquist S (1966) Wood anatomy of Anthemideae, Ambrosieae, Calenduleae and Articotideae (Compositae). Aliso 6:1–23CrossRefGoogle Scholar
  13. Castro MDM, Leitão-Filho HDF, Monteiro WR (1997) Utilização de estruturas secretoras na identificação dos gêneros de Asteraceae de uma vegetação de cerrado. Braz J Bot 20:163–174CrossRefGoogle Scholar
  14. Ciccarelli D, Garbari F, Pagni AM (2007) Glandular hairs of the ovary: a helpful character for Asteroideae (Asteraceae) taxonomy? Ann Bot Fenn 44:1–7Google Scholar
  15. Cury G, Appezzato-da-Glória B (2009) Internal secretory spaces in thickened underground systems of Asteraceae species. Aust J Bot 57:229–239CrossRefGoogle Scholar
  16. da Silva EMS, Hayashi AH, Appezzato-da-Glória B (2014) Anatomy of vegetative organs in Aldama tenuifolia and A. kunthiana (Asteraceae: Heliantheae). Braz J Bot 37:505–517CrossRefGoogle Scholar
  17. Dengler NG (2002) An integral part of botany: book review. Am J Bot 89:369–374CrossRefGoogle Scholar
  18. Dormer KJ (1961) The crystals in the ovaries of certain Compositae. Ann Bot-Lond 25:241–254CrossRefGoogle Scholar
  19. Dormer KJ (1962) The taxonomic significance of crystal forms in Centaurea. New Phytol 61:32–35CrossRefGoogle Scholar
  20. Duarte MR, Budel JM, Matzenbacher NI, Menarim DO (2011) Microscopic diagnosis of the leaf and stem of Lucilia nitens Less., Asteraceae. Lat Am J Pharm 30:2070–2075Google Scholar
  21. Duke SO, Paul RN (1993) Development and fine structure of glandular trichomes of Artemisia annua L. Int J Plant Sci 154:107–118CrossRefGoogle Scholar
  22. Duke MV, Paul RN, Elsohly HN, Sturtz G, Duke SO (1994) Localization of artemisinin and artemisitene in foliar tissues of glanded and glandless biotypes of Artemisia annua L. Int J Plant Sci 155:365–372CrossRefGoogle Scholar
  23. Ehleringer JR, Bjorkman O, Mooney HA (1976) Leaf pubescence: effects on absorbance and photosynthesis in a desert shrub. Science 192:376–377CrossRefGoogle Scholar
  24. Fahmy GM (1997) Leaf anatomy and its relation to the ecophysiology of some non-succulent desert plants from Egypt. J Arid Environ 36:499–525CrossRefGoogle Scholar
  25. Fahn A (1979) Secretory tissues in plants. Academic Press Inc., LondonGoogle Scholar
  26. Fahn A, Cutler FD (1992) Xerophytes. Encyclopedia of plant anatomy, vol XIII, Part 3. Gebrüder Borntraeger, BerlinGoogle Scholar
  27. Ferreira JF, Janick J (1995) Floral morphology of Artemisia annua with special reference to trichomes. Int J Plant Sci 156:807–815CrossRefGoogle Scholar
  28. Figueiredo AC, Pais MSS (1994) Ultrastructural aspects of the glandular cells from the secretory trichomes and from the cell suspension cultures of Achillea millefolium L. ssp. millefolium. Ann Bot-Lond 74:179–190CrossRefGoogle Scholar
  29. Franceschi VR, Horner HT Jr (1980) Calcium oxalate crystals in plants. Bot Rev 46:361–427CrossRefGoogle Scholar
  30. Franceschi VR, Nakata PA (2005) Calcium oxalate in plants: formation and function. Annu Rev Plant Biol 56:41–71CrossRefGoogle Scholar
  31. Garcia S, Sanz M, Garnatje T, Kreitschitz A, McArthur ED, Vallès J (2004) Variation of DNA amount in 47 populations of the subtribe Artemisiinae and related taxa (Asteraceae, Anthemideae): karyological, ecological, and systematic implications. Genome 47:1004–1014CrossRefGoogle Scholar
  32. Gavrilović M, Soković MD, Stanković M, Marin PD, Stevanović ZD, Janaćković P (2016) Antimicrobial and antioxidative activity of various leaf extracts of Amphoricarpos Vis. (Asteraceae) taxa. Arch Biol Sci 68:803–810CrossRefGoogle Scholar
  33. Gavrilović M, Erić S, Marin PD, Garcia-Jacas N, Susanna A, Janaćković P (2017) Scanning electron microscopy coupled with energy dispersive spectrometric analysis reveals for the first time weddellite and sylvite crystals on the surface of involucral bracts and petals of two Xeranthemum L. (Compositae) species. Microsc Microanal 23:679–686CrossRefGoogle Scholar
  34. Gavrilović M, Tešević V, Đorđević I, Rajčević N, Bakhia A, Garcia-Jacas N, Susanna A, Marin PD, Janaćković P (2018a) Leaf micromorphology, antioxidative activity and a new record of 3-deoxyamphoricarpolide of relict and limestone endemic Amphoricarpos elegans Albov (Compositae) from Georgia. Arch Biol Sci 70:613–620CrossRefGoogle Scholar
  35. Gavrilović M, Rančić D, Škundrić T, Dajić-Stevanović Z, Marin PD, Garcia-Jacas N, Susanna A, Janaćković P (2018b) Anatomical characteristics of Xeranthemum L. (Compositae) species: taxonomical insights and evolution of life form. Pak J Bot. Google Scholar
  36. Hayat MQ, Ashraf M, Khan MA, Yasmin G, Shaheen N, Jabeen S (2009) Diversity of foliar trichomes and their systematic implications in the genus Artemisia (Asteraceae). Int J Agric Biol 11:542–546Google Scholar
  37. Hayat MQ, Ashraf M, Jabeen S, Shaheen N, Yasmin G, Khan M (2010) Taxonomic implications of foliar epidermal characteristics with special reference to stomatal variations in the genus Artemisia (Asteraceae). Int J Agri Biol 12:221–226Google Scholar
  38. Hoffmann J, Kingsolver B, McLaughlin S, Timmermann B (1984) Production of resins by arid-adapted Asteraceae. In: Timmermann BN, Steelink C, Loewus F (eds) Phytochemical adaptations to stress. Plenum Press, New York, pp 251–271CrossRefGoogle Scholar
  39. Horner HT (1977) A comparative light and electron-microscopic study of microsporogenesis in male-fertile and cytoplasmic male-sterile sunflower (Helianthus annuus). Am J Bot 64:745–759CrossRefGoogle Scholar
  40. Horner HT, Kausch AP, Wagner BL (2000) Ascorbic acid: a precursor of oxalate in crystal idioblasts of Yucca torreyi in liquid root culture. Int J Plant Sci 161:861–868CrossRefGoogle Scholar
  41. Horner HT, Wanke S, Samain MS (2009) Evolution and systematic value of leaf crystal macropatterns: a phylogenetic approach in the genus Peperomia (Piperaceae). Int J Plant Sci 170:343–354CrossRefGoogle Scholar
  42. Horner HT, Wanke S, Samain MS (2012) A comparison of leaf crystal macropatterns in the two sister genera Piper and Peperomia (Piperaceae). Am J Bot 99:983–997CrossRefGoogle Scholar
  43. Ilarslan H, Palmer RG, Horner HT (2001) Calcium oxalate crystals in developing seeds of soybean. Ann Bot-Lond 88:243–257CrossRefGoogle Scholar
  44. Ivănescu B, Miron A, Lungu C (2015) Histo-anatomy of vegetative organs of some Artemisia species. Med-Surg J 119:917–924Google Scholar
  45. Jane MB, Duarte MDR, Farago PV, Franco CR, Santos VL, Oliveira A (2011) Comparative morpho-anatomical study of Baccharis curitybensis Heering ex Malme and Baccharis spicata (Lam.) Baill. Lat Am J Pharm 30:1560–1566Google Scholar
  46. Johansen DA (1940) Plant microtechnique. McGraw-Hill Book Company, New YorkGoogle Scholar
  47. Johnson HB (1975) Plant pubescence: an ecological perspectives. Bot Rev 41:233–253CrossRefGoogle Scholar
  48. Karanović D, Luković J, Zorić L, Anačkov G, Boža P (2015) Taxonomic status of Aster, Galatella and Tripolium (Asteraceae) in view of anatomical and micro-morphological evidence. Nord J Bot 33:484–497CrossRefGoogle Scholar
  49. Kartal C (2016) Calcium oxalate crystals in some species of the tribe Cardueae (Asteraceae). Bot Sci 94:107–119CrossRefGoogle Scholar
  50. Kelsey RG (1984) Glandular trichomes: a helpful taxonomic character for Artemisia nova (black sagebrush). J Range Manag 37:370–372CrossRefGoogle Scholar
  51. Konowalik K, Kreitschitz A (2012) Morphological and anatomical characteristics of Artemisia absinthium var. absinthium and its Polish endemic variety A. absinthium var. calcigena. Plant Syst Evol 298:1325–1336CrossRefGoogle Scholar
  52. Korth KL, Doege SJ, Park SH, Goggin FL, Wang Q, Gomez SK, Liu G, Jia L, Nakata PA (2006) Medicago truncatula mutants demonstrate the role of plant calcium oxalate crystals as an effective defense against chewing insects. Plant Physiol 141:188–195CrossRefGoogle Scholar
  53. Kostman TA, Franceschi VR (2000) Cell and calcium oxalate crystals growth is coordinated to achieve high-capacity calcium regulation in plants. Protoplasma 214:166–179CrossRefGoogle Scholar
  54. Kreitschitz A, Vallès J (2007) Achene morphology and slime structure in some taxa of Artemisia L. and Neopallasia L. (Asteraceae). Flora 202:570–580CrossRefGoogle Scholar
  55. Kuo-Huang LL, Ku MSB, Franceschi VR (2007) Correlations between calcium oxalate crystals and photosynthetic activities in palisade cells of shade-adapted Peperomia glabella. Bot Stud 48:155–164Google Scholar
  56. Lersten NR, Curtis JD (2001) Idioblasts and other unusual internal foliar secretary structures in Scrophulariaceae. Plant Syst Evol 227:63–73CrossRefGoogle Scholar
  57. Lersten NR, Horner HT (2000) Calcium oxalate crystals types and trends in their distribution patterns in leaves of Prunus (Rosaceae: Prunoideae). Plant Syst Evol 224:83–96CrossRefGoogle Scholar
  58. Lestern NR, Curtis JD (1985) Distribution and anatomy of hydathodes in Asteraceae. Bot Gaz 146:106–114CrossRefGoogle Scholar
  59. Lodari C, Hattori K, Futsuhara Y (1989) Morphological difference on leaf surface and pollen grains in genus Artemisia. Jpn J Breed 39:9–12CrossRefGoogle Scholar
  60. Luković J, Malenčić D, Zorić L, Kodranov M, Karanović D, Kiprovski B, Boža P (2013) Anatomical characteristics and antioxidant ability of Centaurea sadleriana reveals an adaptation towards drought tolerance. Cent Eur J Biol 8:788–798Google Scholar
  61. Lusa MG, Da Costa FB, Appezzato-da-Glória B (2016) Histolocalization of chemotaxonomic markers in Brazilian Vernonieae (Asteraceae). Bot J Linn Soc 182:581–593CrossRefGoogle Scholar
  62. Lyshede OB (1979) Xeromorphic features of three stem assimilants in relation to their ecology. Bot J Linn Soc 78:85–98CrossRefGoogle Scholar
  63. Maghni B, Hellal B, Maatoug M (2018) Dynamics of the anatomical variability of Artemisia herba-alba in Algeria. Biosyst Divers 26:239–244CrossRefGoogle Scholar
  64. Marchese JA, Broetto F, Ming LC, Ducatti C, Rodella RA, Ventrella MC, Gomes GDR, Franceschi LD (2005) Carbon isotope composition and leaf anatomy as a tool to characterize the photosynthetic mechanism of Artemisia annua L. Braz J Plant Physiol 17:187–190CrossRefGoogle Scholar
  65. McArthur ED, Plummer AP (1978) Biogeography and management of native western shrubs: a case study, section Tridentatae of Artemisia. Great Basin Nat 2:229–243Google Scholar
  66. Meric C (2009a) Calcium oxalate crystals in some species of the tribe Inuleae (Asteraceae). Acta Biol Crac Ser Bot 51:105–110Google Scholar
  67. Meric C (2009b) Calcium oxalate crystals in Aster squamatus and Bellis perennis (Asteraceae: Astereae). Phytol Balc 15:255–259Google Scholar
  68. Meric C, Dane F (2004) Calcium oxalate crystals in floral organs of Helianthus annuus L. and H. tuberosus L. (Asteraceae). Acta Biol Szeged 48:19–23Google Scholar
  69. Metcalfe CR (1983) Secretory structures: cells, cavities and canals in leaves and stems. Laticifers and latex. In: Metcalfe CR, Chalk L (eds) Anatomy of the dicotyledons. Wood, structure and conclusion of the general introduction. Clarendon Press, Oxford, pp 64–97Google Scholar
  70. Metcalfe CR, Chalk L (1950) Anatomy of the dicotyledons: leaves, stem, and wood in relation to taxonomy with notes on economic uses, vol 2. Clarendon Press, OxfordGoogle Scholar
  71. Metcalfe CR, Chalk L (1957) Anatomy of the dicotyledons, vol 2. Clarendon Press, OxfordGoogle Scholar
  72. Metcalfe CR, Chalk L (1979) Anatomy of dicotyledons: systematic anatomy of the leaf and stem, with a brief history of the subject, vol 1. Claredon Press, OxfordGoogle Scholar
  73. Molano-Flores B (2001) Herbivory and calcium concentrations affect calcium oxalate crystal formation in leaves of Sida (Malvaceae). Ann Bot-Lond 88:387–391CrossRefGoogle Scholar
  74. Mott KA, Gibson AC, O’Leary JW (1982) The adaptive significance of amphistomatic leaves. Plant Cell Environ 5:455–460CrossRefGoogle Scholar
  75. Noorbakhsh SN, Ghahreman A, Attar F, Mahdigholi K (2008) Leaf anatomy of Artemisia (Asteraceae) in Iran and its taxonomic implications. Iran J Bot 14:54–69Google Scholar
  76. O’Brien TP, Feder N, McCully ME (1964) Polychromatic staining of plant cell walls by toluidine blue O. Protoplasma 59:368–373CrossRefGoogle Scholar
  77. Pagni AM, Orlando R, Masini A, Ciccarelli D (2003) Secretory structures of Santolina ligustica Arrigoni (Asteraceae), an Italian endemic species. Isr J Plant Sci 51:185–192CrossRefGoogle Scholar
  78. Pareto G (1985) Artemisie. Ricerca ed applicazione. Quaderni Agricoli, supplemento 2:1–261Google Scholar
  79. Pellicer J, Garnatje T, Molero J, Pustahija F, Siljak-Yakovlev S, Vallès J (2010) Origin and evolution of the South American endemic Artemisia species (Asteraceae): evidence from molecular phylogeny, ribosomal DNA and genome size data. Aust J Bot 58:605–616CrossRefGoogle Scholar
  80. Pennisi SV, McConnell DB (2001) Taxonomic relevance of calcium oxalate cuticular deposits in Dracaena Vand. ex L. HortScience 36:1033–1036CrossRefGoogle Scholar
  81. Ponce MM (1986) Morfología ecológica de plantas saxícolas del Cerro de la Ventana, Provincia de Buenos Aires, Argentina. Darwiniana 27:237–271Google Scholar
  82. Prychid CJ, Rudall PJ (1999) Calcium oxalate crystals in monocotyledons: a review of their structure and systematics. Ann Bot-Lond 84:725–739CrossRefGoogle Scholar
  83. Rabie M, Jalili A, Zarrinkamar F (2006) Anatomical characteristics of five Artemisia species in the north of Iran. Pajouhesh & Sazandegi 70:79–87Google Scholar
  84. Ruzin SE (1999) Plant microtechnique and microscopy. Oxford University Press, OxfordGoogle Scholar
  85. Sanz M, Vilatersana R, Hidalgo O, Garcia-Jacas N, Susanna A, Schneeweiss GM, Vallès J (2008) Molecular phylogeny and evolution of floral characters of Artemisia and allies (Anthemideae, Asteraceae): evidence from nrDNA ETS and ITS sequences. Taxon 57:66–78Google Scholar
  86. Scatena VL, Giulietti AM, Borba EL, Van den Berg C (2005) Anatomy of Brazilian Eriocaulaceae: correlation with taxonomy and habitat using multivariate analyses. Plant Syst Evol 253:1–22CrossRefGoogle Scholar
  87. Simpson BB (2009) Economic importance of compositae. In: Funk VA, Susanna A, Stuessy TF, Bayer RJ (eds) Systematics, evolution and biogeography of compositae. IAPT, Vienna, pp 45–58Google Scholar
  88. Solereder H (1908) Systematic anatomy of the dicotyledons: a handbook for laboratories of pure and applied botany, vol 1. Clarendon Press, OxfordGoogle Scholar
  89. Sosa MM, Via do Pico GM, Dematteis M (2014) Comparative anatomy of leaves and stems in some species of the South American genus Chrysolaena (Vernonieae, Asteraceae) and taxonomic implications. Nord J Bot 32:611–619CrossRefGoogle Scholar
  90. Tan RX, Zheng WF, Tang HQ (1998) Biologically active substances from the genus Artemisia. Planta Med 64:295–302CrossRefGoogle Scholar
  91. Tetley U (1925) The secretory system of the roots of the Compositae. New Phytol 24:138–162CrossRefGoogle Scholar
  92. Torrell M, Garcia-Jacas N, Susanna A, Vallès J (1999) Infrageneric phylogeny of the genus Artemisia L. (Asteraceae, Anthemideae) based on nucleotide sequences of nuclear ribosomal DNA internal transcribed spacers (ITS). Taxon 48:721–736CrossRefGoogle Scholar
  93. Vallès J, Garnatje T (2005) Artemisia and its allies: genome organization and evolution and their biosystematic, taxonomic and phylogenetic implications in the Artemisiinae and related subtribes (Asteraceae, Anthemideae). In: Sharma A (ed) Plant genome: biodiversity and evolution, vol 1B. Phanerogams. Science Publishers, Enfield, pp 255–285Google Scholar
  94. Vallès J, Torrell M, Garnatje T, Garcia-Jacas N, Vilatersana R, Susanna A (2003) The genus Artemisia and its allies, phylogeny of the subtribe Artemisiinae (Asteraceae, Anthemideae) based on nucleotide sequences of nuclear ribosomal DNA internal transcribed spacers (ITS). Plant Biol 5:274–284CrossRefGoogle Scholar
  95. Volk GM, Lynch-Holm VJ, Kostman TA, Goss LJ, Franceschi VR (2002) The role of druse and raphide calcium oxalate crystals in tissue calcium regulation in Pistia stratiotes leaves. Plant Biol 4:34–45CrossRefGoogle Scholar
  96. Watson LE, Bates PL, Evans TM, Unwin MM, Estes JR (2002) Molecular phylogeny of subtribe Artemisiinae (Asteraceae), including Artemisia and its allied and segregate genera. BMC Evol Biol 2:17CrossRefGoogle Scholar
  97. Werker E, Fahn A (1981) Secretory hairs of Inula viscosa (L.) Ait.—development, ultrastructure, and secretion. Bot Gaz 142:461–476CrossRefGoogle Scholar
  98. Zhang X, Yang C, Seago JL (2018) Anatomical and histochemical traits of roots and stems of Artemisia lavandulaefolia and A. selengensis (Asteraceae) in the Jianghan Floodplain, China. Flora 239:87–97CrossRefGoogle Scholar

Copyright information

© Botanical Society of Sao Paulo 2019

Authors and Affiliations

  1. 1.Chair of Plant Morphology and Systematics, Institute of Botany and Botanical Garden “Jevremovac”, Faculty of BiologyUniversity of BelgradeBelgradeSerbia
  2. 2.Department of Agrobotany, Faculty of AgricultureUniversity of BelgradeBelgradeSerbia
  3. 3.Department of Botany, Faculty of ScienceUniversity of Al - Gabel Al - GharbeZintanLibya

Personalised recommendations