Advertisement

Brazilian Journal of Botany

, Volume 42, Issue 1, pp 53–61 | Cite as

Geographical distribution of Stryphnodendron adstringens Mart. Coville (Fabaceae): modeling effects of climate change on past, present and future

  • Igor Lucien Bione Dardenne BarbosaEmail author
  • Hauanny Rodrigues Oliveira
  • Levi Carina Terribile
  • José Alexandre Felizola Diniz-Filho
Original article

Abstract

The world is passing through abrupt climate changes that are a threat for biodiversity. Stryphnodendron adstringens (Mart.) Coville (Fabaceae) is a tree species endemic to the “Cerrado” biome with a high economic potential. Its exploitation is done in an extractive way, which, coupled with climate changes and other landscape changes, can contribute to its decline. Here, we use ecological niche modeling (ENM) to map its distribution and environmental suitability in the past, present and future climates. The environmental variables were derived from community climate system model, for present, past and future scenarios. The maps showed that the specie had a larger distribution area in the past, during the last glacial maximum, and it decreased mainly in the Amazon rainforest region; today, the species is found mainly in the center of “Cerrado.” For the different climatic scenarios predicted for the future and considering various levels of anthropogenic drivers for climate change, a drastic loss of climatically suitability area of S. adstringens is expected, which may compromise the viability of the species. Our ENMs can then be useful to better establish and delimit conservation actions for this important species in the “Cerrado” region.

Keywords

Barbatimão “Cerrado” biome Ecological niche models Ensemble forecasting 

Notes

Acknowledgements

This work is supported by several Grants from CNPq, including PIBIC fellowship to ILBDB, Productivity Grant to JAFDF and LCT, and “Universal” Project (CNPq/FAPEG). HRO is supported by a CAPES Doctoral Grant. This paper was developed in the context of the Project GENPAC (Geographical Genetics and Conservation Priorities in Brazilian Cerrado), supported by CNPq and FAPEG, and is now developed in the context of the INCT in Ecology, Evolution and Biodiversity Conservation.

Author contributions

ILBDB and HRO collected and prepared the data used in modeling, and LCT performed the computation of ENMs in software BIOENSEMBLES. ILBDB analyzed and interpreted the ENMs and drafted the manuscript. HRO, LCT and JAFD contributed to important intellectual content by critical revision of manuscript. JAFD supervised the project and gave final approval of the version to be submitted.

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interest concerning the publication of this article.

References

  1. Ab’Saber AN (2000) Spaces occupied by the expansion of dry climates in South America during the Quaternary ice ages. Rev Inst Geol 21:71–78Google Scholar
  2. Araújo MB, New M (2007) Ensemble forecasting of species distributions. Trends Ecol Evol 22:42–47.  https://doi.org/10.1016/j.tree.2006.09.010 CrossRefGoogle Scholar
  3. Bellard C, Bertelsmeier C, Leadley P et al (2012) Impacts of climate change on the future of biodiversity. Ecol Lett 15:365–377.  https://doi.org/10.1111/j.1461-0248.2011.01736.x CrossRefGoogle Scholar
  4. Borges-Filho HC, Felfili JM (2003) Avaliação dos níveis de extrativismo das cascas de barbatimão (Stryphnodendron adstringens) no Distrito Federal, Brasil. Rev Árvore 27:735–745.  https://doi.org/10.1590/S0100-67622003000500016 CrossRefGoogle Scholar
  5. Brook BW, Sodhi NS, Bradshaw CJA (2008) Synergies among extinction drivers under global change. Trends Ecol Evol 23:453–460.  https://doi.org/10.1016/j.tree.2008.03.011 CrossRefGoogle Scholar
  6. Carnaval AC, Moritz C (2008) Historical climate modelling predicts patterns of current biodiversity in the Brazilian Atlantic forest. J Biogeogr.  https://doi.org/10.1111/j.1365-2699.2007.01870.x Google Scholar
  7. Caten CT, Lima-Ribeiro MS, Silva NJ et al (2017) Evaluating the effectiveness of Brazilian protected areas under climate change. Trop Conserv Sci 10:1–8.  https://doi.org/10.1177/1940082917722027 CrossRefGoogle Scholar
  8. Chaves DA, Lemes SR, Araujo LA et al (2016) Avaliação da atividade angiogênica da solução aquosa do barbatimão (Stryphnodendron adstringens). Rev Bras Plantas Med 18:524–530.  https://doi.org/10.1590/1983-084X/15_093 CrossRefGoogle Scholar
  9. Clark PU, Clark PU, Dyke AS et al (2009) The last glacial maximum. Science.  https://doi.org/10.1126/science.1172873 Google Scholar
  10. Collevatti RG, Nabout JC, Diniz-Filho JAF (2011) Range shift and loss of genetic diversity under climate change in Caryocar brasiliense, a neotropical tree species. Tree Genet Genomes 7:1237–1247.  https://doi.org/10.1007/s11295-011-0409-z CrossRefGoogle Scholar
  11. Collevatti RG, Terribile LC, Lima-Ribeiro MS et al (2012a) A coupled phylogeographical and species distribution modelling approach recovers the demographical history of a Neotropical seasonally dry forest tree species. Mol Ecol 21:5845–5863.  https://doi.org/10.1111/mec.12071 CrossRefGoogle Scholar
  12. Collevatti RG, Lima-Ribeiro MS, Souza-Neto AC et al (2012b) Recovering the demographical history of a Brazilian cerrado tree species Caryocar brasiliense: coupling ecological niche modeling and coalescent analyses. Nat a Conserv 10:169–176.  https://doi.org/10.4322/natcon.2012.024 CrossRefGoogle Scholar
  13. Collevatti RG, Lima-Ribeiro MS, Diniz-filho JAF et al (2013) Stability of Brazilian seasonally dry forests under climate change: inferences for long-term conservation. Am J Plant Sci 2013:792–805CrossRefGoogle Scholar
  14. Colwell RK, Rangel TF (2009) Hutchinson’s duality: the once and future niche. Proc Natl Acad Sci 106:19651–19658.  https://doi.org/10.1073/pnas.0901650106 CrossRefGoogle Scholar
  15. De-Souza TM, Severi JA, Silva VYA et al (2007) Bioprospecção de atividade antioxidante e antimicrobiana da casca de Stryphnodendron adstringens (Mart.) Coville (Leguminosae-Mimosoidae). Rev Ciencias Farm Basica e Apl 28:221–226Google Scholar
  16. Diniz-Filho JAF, Ferro VG, Santos T et al (2010) The three phases of the ensemble forecasting of niche models: geographic range and shifts in climatically suitable areas of Utetheisa ornatrix (Lepidoptera). Rev Bras Entomol 54:339–349.  https://doi.org/10.1590/S0085-56262010000300001 CrossRefGoogle Scholar
  17. Diniz-Filho JAF, Bini LM (2008) Macroecology, global change and the shadow of forgotten ancestors. Glob Ecol Biogeogr 17:11–17.  https://doi.org/10.1111/j.1466-8238.2007.00339.x CrossRefGoogle Scholar
  18. Diniz-filho AF, Bini LM, Rangel TF et al (2009) Partitioning and mapping uncertainties in ensembles of forecasts of species turnover under climate change. Ecography 32:897–906.  https://doi.org/10.1111/j.1600-0587.2009.06196.x CrossRefGoogle Scholar
  19. Felfili JM, Claudio M, Silva DA (1999) Estudo fenológico de Stryphnodendron adstringens (Mart.) Coville no cerrado sensu stricto da Fazenda Água Limpa no Distrito. Rev Bras Bot 22:85–90.  https://doi.org/10.1590/S0100-84041999000100011 Google Scholar
  20. Giannini TC, Siqueira MF, Acosta AL et al (2012) Current challenges of species distribution predictive modelling. Rodriguésia 63:733–749.  https://doi.org/10.1590/S2175-78602012000300017 CrossRefGoogle Scholar
  21. Grecchi RC, Gwyn QHJ, Bénié GB et al (2014) Land use and land cover changes in the Brazilian Cerrado: a multidisciplinary approach to assess the impacts of agricultural expansion. Appl Geogr 55:300–312.  https://doi.org/10.1016/j.apgeog.2014.09.014 CrossRefGoogle Scholar
  22. Hanewinkel M, Cullmann DA, Schelhaas M et al (2012) Climate change may cause severe loss in the economic value of European forest land. Nat Clim Change 3:203–207.  https://doi.org/10.1038/nclimate1687 CrossRefGoogle Scholar
  23. Henriques BO, Corrêa O, Azevedo EPC et al (2016) In vitro TNF Inhibitory activity of Brazilian plants and anti-inflammatory effect of Stryphnodendron adstringens in an acute arthritis model. Evid Based Complement Altern Med 2016:1–15.  https://doi.org/10.1155/2016/9872598 CrossRefGoogle Scholar
  24. Holt RD (1990) The microevolutionary consequences of climate change. Trends Ecol Evol 5:311–315.  https://doi.org/10.1016/0169-5347(90)90088-U CrossRefGoogle Scholar
  25. Hughes L (2000) Biological consequences of global warming: is the signal already apparent? Trends Ecol Evol 15:56–61.  https://doi.org/10.1016/S0169-5347(99)01764-4 CrossRefGoogle Scholar
  26. Instituto Brasileiro de Geografia e estatística, IBGE (2012) Produção Agrícula Municipal e Censu da População. SIDRA. https://sidra.ibge.gov.br/Acervo#/S/Q. Accessed 29 May 2018
  27. IPCC (2014) Climate change 2014: mitigation of climate change. Summary for policymakers and technical summaryGoogle Scholar
  28. Jump AS, Peñuelas J (2005) Running to stand still: adaptation and the response of plants to rapid climate change. Ecol Lett 8:1010–1020.  https://doi.org/10.1111/j.1461-0248.2005.00796.x CrossRefGoogle Scholar
  29. Klink CA (2013) Policy intervention in the Cerrado Savannas of Brazil: changes in land-use and effects on conservation. In: Consorte-McCrea A, Santos E (eds) Ecology and conservation of the maned wolf: multidisciplinary perspectives. CRC Press, Boca Raton, pp 293–307CrossRefGoogle Scholar
  30. Lima JS, Telles MPC, Chaves LJ et al (2017) Demographic stability and high historical connectivity explain the diversity of a savanna tree species in the Quaternary. Ann Bot-Lond 119:645–657.  https://doi.org/10.1093/aob/mcw257 Google Scholar
  31. Lima-Ribeiro MS, Varela S, González-Hernández J et al (2015) Ecoclimate: a database of climate data from multiple models for past, present, and future for macroecologists and biogeographers. Biodivers Inform 10:1–21.  https://doi.org/10.17161/bi.v10i0.4955 CrossRefGoogle Scholar
  32. Lopes TM, Bailly D, Almeida BA et al (2017) Two sides of a coin: effects of climate change on the native and non-native distribution of Colossoma macropomum in South America. PLoS One 12:e0179684.  https://doi.org/10.1371/journal.pone.0179684 CrossRefGoogle Scholar
  33. Luiz RLF, Vila TVM, de Mello JCP et al (2015) Proanthocyanidins polymeric tannin from Stryphnodendron adstringens are active against Candida albicans biofilms. BMC Complement Altern Med 15:68.  https://doi.org/10.1186/s12906-015-0597-4 CrossRefGoogle Scholar
  34. Marmion M, Parviainen M, Luoto M et al (2009) Evaluation of consensus methods in predictive species distribution modelling. Divers Distrib 15:59–69.  https://doi.org/10.1111/j.1472-4642.2008.00491.x CrossRefGoogle Scholar
  35. Mora C, Metzger R, Rollo A, Myers RA (2007) Experimental simulations about the effects of overexploitation and habitat fragmentation on populations facing environmental warming. Proc R Soc B.  https://doi.org/10.1098/rspb.2006.0338 Google Scholar
  36. Moss RH, Edmonds JA, Hibbard KA et al (2010) The next generation of scenarios for climate change research and assessment. Nature 463:747–756.  https://doi.org/10.1038/nature08823 CrossRefGoogle Scholar
  37. Myers N, Mittermeier RA, Mittermeier CG et al (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858.  https://doi.org/10.1038/35002501 CrossRefGoogle Scholar
  38. Nabout OC, Iniz-Filho JAFD, Bini M et al (2010) Ensemble forecasting shifts in climatically suitable areas for Tropidacris cristata (Orthoptera : Acridoidea : Romaleidae). Insect Conserv Divers.  https://doi.org/10.1111/j.1752-4598.2010.00090.x Google Scholar
  39. Nabout JC, Oliveira G, Magalhães MR et al (2011) Global climate change and the production of “Pequi” fruits (Caryocar brasiliense) in the Brazilian Cerrado. Nat Conserv 9:55–60.  https://doi.org/10.4322/natcon.2011.006 CrossRefGoogle Scholar
  40. Nabout JC, Magalhães MR, de Amorim Gomes MA, da Cunha HF (2016) The impact of global climate change on the geographic distribution and sustainable harvest of Hancornia speciosa Gomes (Apocynaceae) in Brazil. Environ Manag 57:814–821.  https://doi.org/10.1007/s00267-016-0659-5 CrossRefGoogle Scholar
  41. Oliveira G, Lima-Ribeiro MS, Terribile LC et al (2015) Conservation biogeography of the Cerrado’s wild edible plants under climate change: linking biotic stability with agricultural expansion. Am J Bot 102:870–877.  https://doi.org/10.3732/ajb.1400352 CrossRefGoogle Scholar
  42. Oliveira HR, Staggemeier VG, Faria JQ, Oliveira G, Diniz Filho JAF (2018) Geographical ecology and conservation of Eugenia L. (Myrtaceae) in the Brazilian Cerrado: past, present and future. Austral Ecol.  https://doi.org/10.1111/aec.12657 Google Scholar
  43. Painel Brasileiro de Mudanças Climáticas, PBMC (2013) Volume especial, Primeiro, Relatório de Avaliação Nacional. Sumário ExecutivoGoogle Scholar
  44. Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Ann Rev Ecol Evol Syst 37:637–669.  https://doi.org/10.1146/annurev.ecolsys.37.091305.110100 CrossRefGoogle Scholar
  45. Pecl GT, Araújo MB, Bell JD et al (2017) Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 80:1–7.  https://doi.org/10.1126/science.aai9214 Google Scholar
  46. Peterson AT, Soberón J, Pearson RG et al (2011) Ecological niches and geographic distributions. Princeton University Press, New JerseyCrossRefGoogle Scholar
  47. Rangel, TF, Diniz-Filho JAF, and Araújo MB (2009) BIOENSEMBLES 1.0. Software for computer intensive ensemble forecasting of species distributions under climate change. Goias, Madrid: EvoraGoogle Scholar
  48. Rangel TF, Loyola RD (2012) Labeling ecological niche models. Braz J Nat Conserv Essays Perspect Nat Conserv 10:119–126.  https://doi.org/10.4322/natcon.2012.030 Google Scholar
  49. Root T, Price J, Hall K, Schneider S (2003) Fingerprints of global warming on wild animals and plants. Nature 421:57–60.  https://doi.org/10.1038/nature01309.1 CrossRefGoogle Scholar
  50. Simon LM, de Oliveira G, de Barreto BS et al (2013) Effects of global climate changes on geographical distribution patterns of economically important plant species in Cerrado. Rev Arvore 37:267–274.  https://doi.org/10.1590/S0100-67622013000200008 CrossRefGoogle Scholar
  51. Soberón J (2007) Grinnellian and Eltonian niches and geographic distributions of species. Ecol Lett 10:1115–1123.  https://doi.org/10.1111/j.1461-0248.2007.01107.x CrossRefGoogle Scholar
  52. Strassburg BBN, Brooks T, Feltran-Barbieri R et al (2017) Moment of truth for the Cerrado hotspot. Nat Ecol Evol 1:1–3.  https://doi.org/10.1038/s41559-017-0099 CrossRefGoogle Scholar
  53. Terribile LC, Lima-Ribeiro MS, Araújo MB et al (2012) Areas of climate stability of species ranges in the Brazilian cerrado: disentangling uncertainties through time. Nat Conserv 10:152–159.  https://doi.org/10.4322/natcon.2012.025 CrossRefGoogle Scholar
  54. Thomas CD, Thomas CD, Cameron A et al (2004) Extinction risk from climate change. Nature 427:145–148.  https://doi.org/10.1038/nature02121 CrossRefGoogle Scholar
  55. Thuiller W (2004) Patterns and uncertainties of species’ range shifts under climate change. Glob Change Biol 10:2020–2027.  https://doi.org/10.1111/j.1365-2486.2004.00859.x CrossRefGoogle Scholar
  56. Thuiller W, Lavorel S, Araújo MB et al (2005) Climate change threats to plant diversity in Europe. Proc Natl Acad Sci-Biol 102:8245–8250CrossRefGoogle Scholar
  57. Urban MC, Bocedi G, Hendry AP et al (2016) Improving the forecast for biodiversity under climate change. Science.  https://doi.org/10.1126/science.aad8466 Google Scholar

Copyright information

© Botanical Society of Sao Paulo 2019

Authors and Affiliations

  1. 1.Departamento de Ecologia, Instituto de Ciências BiológicasUniversidade Federal de GoiásGoiâniaBrazil
  2. 2.Instituto de BiociênciasUniversidade Federal de Goiás, Regional JataíJataíBrazil

Personalised recommendations