Advertisement

Brazilian Journal of Botany

, Volume 42, Issue 1, pp 1–11 | Cite as

Spatio-temporal variation in leaf morphofunctional attributes and relation to growth and survival of young woody plants

  • Vanessa Kelly Rodrigues de AraujoEmail author
  • Gabriela Bispo da Silva
  • Elcida de Lima Araújo
  • Rejane Magalhães de Mendonça Pimentel
  • Kleber Andrade da Silva
Original article
  • 117 Downloads

Abstract

Leaves present adjustments in response to reducing the availability of environmental resources, which may reflect in the plant development. The study investigated the interannual variation in the morphofunctional foliar attributes of seedlings and juveniles of Myracrodruon urundeuva Allemão and Cenostigma pyramidale (Tul.) Gagnom & G.P. Lewis, besides the survival time and growth rates of individuals from two forests of different ages. We analyzed the relationships of the leaf characteristics with plant growth rate and survival time. In two forests, young (24 years) and mature (> 55 years), from the Brazilian semiarid, data sampling of the specific leaf area, specific leaf mass, leaf water content, and mean number of leaves was conducted for 2 years; the growth rate in diameter and height was evaluated during the rainy season of 2016 and the survival time. Most leaf characteristics, growth, and survival rates presented higher values in the young forest, besides more relationships between the leaf attributes and the survival time, according to the species and ontogenetic stage.

Keywords

Anthropogenic forest Arboreal Seedlings Semiarid Traits functional 

Notes

Acknowledgements

Authors thank the Instituto de Pesquisa Agropecuária (IPA) of Caruaru for logistic support; the researchers of the Laboratórios de Ecologia Vegetal e Ecossistemas Nordestinos (LEVEN) and Fitomorfologia funcional (LAFF) for the support in the sampling and analysis of the data; to Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), and to Conselho de Desenvolvimento Científico e Tecnológico (CNPq) for the productivity grants of Elcida Araújo and Rejane Pimentel, and the Fundação de Amparo à Ciência e Tecnologia de Pernambuco (FACEPE) for scholarship and financial support to the Project (APQ-0083.2.05-15).

Author contributions

VKRA, ELA and KAS originally formulated the idea, VKRA, ELA and RMMP developed methodology, VKRA and GBS conducted fieldwork, VKRA, GBS and KAS collaborated in data analysis, VKRA and KAS performed statistical analyses, and VKRA, ELA, RMMP and KAS wrote the manuscript.

Supplementary material

40415_2018_511_MOESM1_ESM.doc (33 kb)
Supplementary material 1 (DOC 33 kb)
40415_2018_511_MOESM2_ESM.doc (126 kb)
Supplementary material 2 (DOC 125 kb)
40415_2018_511_MOESM3_ESM.doc (132 kb)
Supplementary material 3 (DOC 131 kb)

References

  1. Ackerly D (2004) Functional strategies of chaparral shrubs in relation to seasonal water deficit and disturbance. Ecol Monogr 74:25–44.  https://doi.org/10.1890/03-4022 CrossRefGoogle Scholar
  2. Monitoramento Pluviométrico. Agência Pernambucana de Águas e Clima - APAC 2017: http://www.apac.pe.gov.br. Accessed 24 Oct 2017
  3. Albuquerque UP, Florentino ATN, Almeida ALS, Almeida CMAD, Lins Neto EMF, Vieira FJ, Silva FS, Soldati GT, Sousa LG, Santos LL, Ramos MA, Cruz MP, Alencar NL, Medeiros PM, Araújo TAS, Nascimento VT (2010) Caatinga: biodiversidade e qualidade de vida. NUPEEA, RecifeGoogle Scholar
  4. Alvarez-Añorve MY, Quesada M, Sánchez-Azofeifa GA, Avila-Cabadilla LD, Gamon JA (2012) Functional regeneration and spectral reflectance of trees during succession in a highly diverse tropical dry forest ecosystem. Am J Bot 99:816–826.  https://doi.org/10.3732/ajb.1100200 CrossRefGoogle Scholar
  5. Araujo VKR, Santos JMFF, Araújo EL, Pimentel RMM, Silva KA (2017) Influence of leaf morphometric variations on the growth of seedlings and juveniles of woody species in a semiarid environment. Braz J Bot 40:1019–1028.  https://doi.org/10.1007/s40415-017-0398-8 CrossRefGoogle Scholar
  6. Araújo EL, Barretto VT, Leite FVA, Lima VC, Canuto NN (2006) Germinação e protocolos de quebra de dormência de plantas do semi-árido. In: Giulietti AM, Queiroz LP (ed) Recursos Genéticos do semi-árido, vol 5. APNE, Instituto do Milênio do Semi-árido, Recife, pp 73–110Google Scholar
  7. Araújo EL, Castro CC, Albuquerque UP (2007) Dynamics of Brazilian Caatinga—a review concerning the plants, environment and people. Func Ecosyst Commun 1:15–28Google Scholar
  8. Araújo EL, Martins FR, Santos FAM (2008) Ontogenia e variações alométricas na relação comprimento-diâmetro do caule em plantas da caatinga. In: Moura NA, Araújo EL, Albuquerque UP (eds) Biodiversidade, potencial econômico e processos eco-fisiológicos em ecossistemas nordestinos. Comunigraf/Nupeea, Recife, pp 81–104Google Scholar
  9. Araújo EL, Martins FR, Santos FAM (2010) Estádios ontogenéticos e variações no crescimento anual do caule de duas espécies lenhosas em uma área de vegetação de caatinga, Pernambuco, Brasil. In: Albuquerque UP, Moura AN, Araújo EL (ed) Biodiversidade, potencial econômico e processos eco-fisiológicos em ecossistemas nordestinos, vol 2. Bauru, São Paulo, pp 385–410Google Scholar
  10. Chagas MGS, Silva MD, Galvíncio JD, Pimentel RMM (2008) Variações foliares em grupos funcionais vegetais de uma paisagem de restinga, Pernambuco-Brasil. R Bras Geogr Fís 1:50–63.  https://doi.org/10.5935/1984-2295.20080010 Google Scholar
  11. Chaturvedi RK, Raghubanshi AS, Singh JS (2012) Effect of grazing and harvesting on diversity, recruitment and carbon accumulation of juvenile trees in tropical dry forests. For Ecol Manag 284:152–162.  https://doi.org/10.1016/j.foreco.2012.07.053 CrossRefGoogle Scholar
  12. Chaves MM, Maroco JP, Pereira JS (2003) Understanding plant responses to drought-from genes to the whole plant. Funct Plant Biol 30:239–264.  https://doi.org/10.1071/FP02076 CrossRefGoogle Scholar
  13. Climate-data.org. (2017) Clima: Caruaru-PE. https://pt.climate-data.org/location/34674/. Accessed 24 Oct 2017
  14. Cornelissen JHC, Lavorel S, Garnier E, Díaz S, Buchmann N, Gurvich DE, Reich PB, Ter-Steege H, Morgan HD, Van Der Heijden MGA, Pausas JG, Poorter H (2003) A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust J Bot 51:335–380.  https://doi.org/10.1071/BT02124 CrossRefGoogle Scholar
  15. Fajardo L, Rodríguez JP, González V, Briceño-Linares JM (2013) Restoration of a degraded tropical dry forest in Macanao, Venezuela. J Arid Environ 88:236–243.  https://doi.org/10.1016/j.jaridenv.2012.08.009 CrossRefGoogle Scholar
  16. Falcão HM, Medeiros CD, Silva BLR, Sampaio EVSB, Almeida-Cortez JS, Santos MG (2015) Phenotypic plasticity and ecophysiological strategies in a tropical dry forest chronosequence: a study case with Poincianella pyramidalis. For Ecol Manag 340:62–69.  https://doi.org/10.1016/j.foreco.2014.12.029 CrossRefGoogle Scholar
  17. Feliciano ALP, Marangon LC, Holanda AC (2008) Morfologia de sementes, de plântulas e de plantas jovens de aroeira (Myracrodruon urundeuva Allemão). BIOTERRA 8: 198-206 Disponível em: http://www.redalyc.org/articulo.oa?id=50080112. Accessed 21 Feb 2017
  18. Gerhardt K (1996) Effects of root competition and canopy openness on survival and growth of tree seedlings in a tropical seasonal dry forest. For Ecol Manag 82:33–48.  https://doi.org/10.1016/0378-1127(95)03700-4 CrossRefGoogle Scholar
  19. Hooz AM, Camarero JJ, Gutiérrez E, Zuidema PA (2014) Time-dependent effects of climate and drought on tree growth in a Neotropical dry forest: short-term tolerance vs. long-term sensitivity. Agric For Meteorol 188:13–23.  https://doi.org/10.1016/j.agrformet.2013.12.010 CrossRefGoogle Scholar
  20. Kichenin E, Wardle DA, Peltzer DA, Morse CW, Freschet GT (2013) Contrasting effects of plant inter and intraspecific variation on community level trait measures along an environmental gradient. Funct Ecol 27:1254–1261.  https://doi.org/10.1111/1365-2435.12116 CrossRefGoogle Scholar
  21. Lopes CGR, Ferraz EMN, Castro CC, Lima EN, Santos JMFF, Araújo EL (2012) Forest succession and distance from preserved patches in the Brazilian semiarid region. For Ecol Manag 271:115–123.  https://doi.org/10.1016/j.foreco.2012.01.043 CrossRefGoogle Scholar
  22. Lopez-Iglesias B, Villar R, Poorter L (2014) Functional traits predict drought performance and distribution of Mediterranean woody species. Acta Oecol 56:10–18.  https://doi.org/10.1016/j.actao.2014.01.003 CrossRefGoogle Scholar
  23. Lorenzi H (ed) (1992) Árvores brasileiras: manual de identificação e cultivo de plantas arbóreas nativas do Brasil. Plantarum, Nova OdessaGoogle Scholar
  24. Mariano KR, Barreto LS, Silva AHB, Neiva GKP, Amorim S (2009) Fotossíntese e tolerância protoplasmática foliar em Myracrodruon urundeuva Fr. All. Submetida ao déficit hídrico. Rev Caatinga 22:72–77Google Scholar
  25. Martínez-Garza C, Howe HF (2010) Características foliares y tasas vitales de árboles sucesionales tardíos de un bosque tropical perennifolio. Bol Soc Bot México 86:1–10Google Scholar
  26. Mclaren KP, Mcdonald MA (2003) Effects of moisture and shade on seed germination and seedling survival in a tropical dry forest in Jamaica. For Ecol Manag 183:61–75.  https://doi.org/10.1016/S0378-1127(03)00100-2 CrossRefGoogle Scholar
  27. Mendonça AVR, Freitas TAS, Souza LS, Fonseca MDS, Souza JS (2016) Morphology of fruit and seed and germination on Poincianella pyramidalis (Tul.) L. P. Queiroz, comb. Ciência Flor 26:375–387.  https://doi.org/10.5902/1980509822738 CrossRefGoogle Scholar
  28. Nock CA, Vogt RJ, Beisner BE (2016) Functional traits. Wiley, Hoboken, pp 1–8.  https://doi.org/10.1002/9780470015902.a0026282 Google Scholar
  29. Pallardy SG (2008) Physiology of woody plant, 3ª edn. Academic Press, MassachusettsGoogle Scholar
  30. Paz H, Pineda-García F, Pinzón-Pérez LF (2015) Root depth and morphology in response to soil drought: comparing ecological groups along the secondary succession in a tropical dry forest. Oecologia 179:551–561.  https://doi.org/10.1007/s00442-015-3359-6 CrossRefGoogle Scholar
  31. Perez-Harguindeguy N, Diaz S, Garnier E, Lavorel S, Poorter H, Jaureguiberry P, Bret-Harte MS, Cornwell WK, Craine JM, Gurvich DE, Urcelay C (2013) New handbook for standardised measurement of plant functional traits worldwide. Aust J Bot 6:167–234.  https://doi.org/10.1071/BT12225_CO CrossRefGoogle Scholar
  32. Poorter H, Niinemets Ü, Poorter L, Wright IJ, Villar R (2009) Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis. New Phytol 182:565–588.  https://doi.org/10.1111/j.1469-8137.2009.02830.x CrossRefGoogle Scholar
  33. Queiroz LP (2009) Leguminosas da Caatinga. UEFS, Feira de SantanaGoogle Scholar
  34. Rasband WS (2016) ImageJ, U. S. National Institutes of Health. Bethesda, Maryland, USA, 1997–2016. https://imagej.nih.gov/ij/. Accessed 4 Apr 2015
  35. Romero-Duque LP, Jaramillo VJ, Pérez-Jiménez A (2007) Structure and diversity of secondary tropical dry forests in Mexico, differing in their prior land-use history. For Ecol Manag 253:38–47.  https://doi.org/10.1016/j.foreco.2007.07.002 CrossRefGoogle Scholar
  36. Rossi LMB, Koehler HS, Arce JE, Sanquetta CR (2007) Modelagem de recrutamento em florestas. Rev Floresta 37:453–467.  https://doi.org/10.5380/rf.v37i3.9942 Google Scholar
  37. Said SA, Fernandez C, Greff S, Derridj A, Gauquelin T, Mevy JF (2011) Inter-population variability of leaf morpho-anatomical and terpenoid patterns of Pistacia atlantica Desf. ssp. atlantica growing along an aridity gradient in Algeria. Flora 206:397–405.  https://doi.org/10.1016/j.flora.2010.08.002 CrossRefGoogle Scholar
  38. Santos DM, Silva KA, Santos JMFF, Araújo VKR, Araújo EL (2016) Composition, species richness, and density of the germinable seed bank over 4 years in young and mature forests in Brazilian semiarid regions. J Arid Environ 129:93–101.  https://doi.org/10.1016/j.jaridenv.2016.02.012 CrossRefGoogle Scholar
  39. Silva KA, Santos DM, Santos JMFF, Albuquerque UP, Ferraz EMN, Araújo EL (2013) Spatio-temporal variation in a seed bank of a semi-arid region in northeastern Brazil. Acta Oecol 46:25–32.  https://doi.org/10.1016/j.actao.2012.10.008 CrossRefGoogle Scholar
  40. Silva KA, Santos JMFF, Santos DM, Andrade JR, Ferraz EMN, Araújo EL (2015) Interactions between the herbaceous and shrubby-arboreal components in a semiarid region in the northeast of brazil: competition or facilitation? Rev Caatinga 28:157–165.  https://doi.org/10.1590/1983-21252015v28n318rc CrossRefGoogle Scholar
  41. Souza BC, Oliveira RS, Araújo FS, Lima ALA, Rodal MJN (2015) Divergências funcionais e estratégias de resistência à seca entre espécies decíduas e sempre verdes tropicais. Rodriguésia 66:21–32.  https://doi.org/10.1590/2175-7860201566102 CrossRefGoogle Scholar
  42. Webb CT, Hoeting JA, Ames GM, Pyne MI, Poff NL (2010) A structured and dynamic framework to advance traits-based theory and prediction in ecology. Ecol Lett 13:267–283.  https://doi.org/10.1111/j.1461-0248.2010.01444.x CrossRefGoogle Scholar
  43. Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch ZZ, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C (2004) The worldwide leaf economics spectrum. Nature 428:822–828.  https://doi.org/10.1038/nature02403 Google Scholar

Copyright information

© Botanical Society of Sao Paulo 2019

Authors and Affiliations

  • Vanessa Kelly Rodrigues de Araujo
    • 1
    Email author
  • Gabriela Bispo da Silva
    • 1
  • Elcida de Lima Araújo
    • 1
  • Rejane Magalhães de Mendonça Pimentel
    • 1
  • Kleber Andrade da Silva
    • 2
  1. 1.Departamento de BiologiaUniversidade Federal Rural de PernambucoRecifeBrasil
  2. 2.Centro Acadêmico de VitóriaUniversidade Federal de PernambucoVitória de Santo AntãoBrasil

Personalised recommendations