Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

In vitro inhibitory effect of two commercial probiotics on chromogenic actinomycetes

  • 15 Accesses

Abstract

Purpose

Black extrinsic discoloration is a common clinical and aesthetic problem. This study aims to evaluate the potential in vitro antagonistic activity of two commercial probiotics, Streptococcus salivarius M18 and Lactobacillus reuteri ProDentis, against microorganisms associated with black stains.

Methods

Streptococcus salivarius M18 and Lactobacillus reuteri were tested against Aggregatibacter actinomycetemcomitans and Actinomyces naeslundiiusing their cell-free fermentative broth in a planktonic growth inhibition test.

Results

Both probiotic cell-free supernatants showed the ability to reduce the pathogenic bacteria growth in a dose-dependent way. Streptococcus salivarius M18 showed a stronger antimicrobial activity than Lactobacillus reuteri ProDentis against the two indicator strains used. A. naeslundi was less susceptible to the probiotic activity of both S. salivarius and L. reuteri compared to A. actinomycetemcomitans.

Conclusions

The obtained results demonstrate a potent antagonistic ability of probiotics to reduce the growth of microorganisms associated with black tooth stains. Therefore, these strains could be evaluated for a therapeutic use against dental pigmentations.

This is a preview of subscription content, log in to check access.

Fig. 1

References

  1. Allaker RP, Stephen AS. Use of probiotics and oral health. Curr Oral Health Rep. 2017;4:309–18.

  2. Bardellini E, Amadori A, Gobbi E, et al. Does Streptococcus Salivarius strain M18 assumption make black stains disappear in children? Oral Health Prev Dent. 2020 (in press).

  3. Burton JP, Cowley S, Simon RR, et al. Evaluation of safety and human tolerance of the oral probiotic Streptococcus salivarius K12: a randomized, placebo-controlled, double-blind study. Food Chem Toxicol. 2011;49:2356–64.

  4. Burton JP, Drummond BK, Chilcott CN, et al. Influence of the probiotic Streptococcus salivarius strain M18 on indices of dental health in children: a randomized double-blind, placebo-controlled trial. J Med Microbiol. 2013a;62:875–84.

  5. Burton JP, Wescombe PA, Macklaim JM, et al. Persistence of the oral probiotic Streptococcus salivarius M18 is dose dependent and megaplasmid transfer can augment their bacteriocin production and adhesion characteristics. PLoS ONE One. 2013b;8:e65991.

  6. Caglar E, Kuscu OO, Cildir SK, et al. A probiotic lozenge administered medical device and its effect on salivary mutans streptococci and lactobacilli. Int J Paediatr Dent. 2008;18:35–9.

  7. Cintas LM, Casaus MP, Herranz C, et al. Bacteriocins of lactic acid bacteria. Food Sci Tech Int. 2001;7:281–305.

  8. Clinical and Laboratory Standards Institute. Methods for antimicrobial susceptibility testing of anaerobic bacteria. Approved standard-Eight Edition, CLSI document M11-A8. Wayne: Clinical and Laboratory Standards Institute; 2012.

  9. Clinical and Laboratory Standards Institute. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically, M7–A10. Wayne: Clinical and Laboratory Standards Institute; 2016.

  10. de Vrese M, Schrezenmeir J. Probiotics, prebiotics, and synbiotics. Adv Biochem Eng Biotechnol. 2008;111:1–66.

  11. Ganzle MG, Holtzel A, Walter J, et al. Characterization of reutericyclin produced by Lactobacillus reuteri LTH2584. Appl Environ Microbiol. 2000;66:4325–33.

  12. Hattab FN, Qudeimat MA, AlRimawi HS. Dental discoloration: an overview. J Esthet Restor Dent. 1999;11:291–310.

  13. HeinrichWeltzien R, Bartsch B, Eick S. Dental caries and microbiota in children with black stain and non-discoloured dental plaque. Caries Res. 2014;48:118–25.

  14. Heng NCK, HajiIshak NS, Kalyan A, et al. Genome sequence of the bacteriocin-producing oral probiotic Streptococcus salivarius Strain M18. J Bacteriol. 2011;193:6402–3.

  15. Itsaranuwat P, Al-Haddad KSH, Robinson RK. The potential therapeutic benefits of consuming ‘health promoting’ fermented dairy products: a brief update. Int J Dairy Technol. 2003;56:203–10.

  16. Kang MS, Oh JS, Lee HC, et al. Inhibitory effect of Lactobacillus reuteri on periodontopathic and cariogenic bacteria. J Microbiol. 2011;49:193–9.

  17. Keller MK, Hasslof P, Stecksen-Blicks C, et al. Co-aggregation and growth inhibition of probiotic lactobacilli and clinical isolates of mutans streptococci; an in vitro study. Acta Odontol Scand. 2011;69:263–8.

  18. Koll P, Mandar R, Marcotte H, et al. Characterization of oral lactobacilli as potential probiotics for oral health. Oral Microbiol Immunol. 2008;23:139–47.

  19. Krasse P, Carlsson B, Dahl C, et al. Decreased gum bleeding and reduced gingivitis by the probiotic Lactobacillusreuteri. Swed Dent J. 2006;30:55–60.

  20. Li Y, Zhang Q, Zhang F, et al. Analysis of the microbiota of black stain in the primary dentition. PLoS ONE One. 2015;10:e0137030. https://doi.org/10.1371/journal.pone.0137030.

  21. Lin X, Chen X, Chen Y, et al. The effect of five probiotic lactobacilli strains on the growth and biofilm formation of Streptococcus mutans. Oral Dis. 2015;21:e128–e134134.

  22. Litty S, Nagarathna D, Merline V. Probiotics in periodontal therapy. Int J Pharm Bio Sci. 2015;6:242–50.

  23. Meurman JH. Probiotics: do they have a role in oral medicine and dentistry? Eur J Oral Sci. 2005;113(3):188–96.

  24. Reid JS, Beeley JA. Biochemical studies on the composition of gingival debris from children with black extrinsic tooth stain. Caries Res. 1976;10:363–9.

  25. Ronay V, Attin T. Black stain-a review. Oral Health Prev Dent. 2011;9:37–45.

  26. Saba C, Solidani M, Berlutti F, et al. Black stains in the mixed dentition: a PCR microbiological study of the etiopathogenic bacteria. J Clin Pediatr Dent. 2006;30:219–24.

  27. Soukos NS, Som S, Abernethy AD, et al. Phototargeting oral black-pigmented bacteria. Antimicrob Agents Chemother. 2005;49:1391–6.

  28. Tagg JR, Dierksen KP. Bacterial replacement therapy: adapting ‘germ warfare’ to infection prevention. Trends Biotechnol. 2003;21:217–23.

  29. Talarico TL, Casas IA, Chung TC, et al. Production and isolation of reuterin, a growth inhibitor produced by Lactobacillus reuteri. Antimicrob Agents Chemother. 1988;32:1854–8.

  30. Teughels W, Loozen G, Quirynen M. Do probiotics offer opportunities to manipulate the periodontal oral microbiota? J Clin Periodontol. 2011;38:159–77.

  31. Teughels W, Durukan A, Ozcelik O, et al. Clinical and microbiological effects of Lactobacillus reuteri probiotics in the treatment of chronic periodontitis: a randomized placebo-controlled study. J Clin Periodontol. 2013;40:1025–35.

  32. Twetman S, Stecksén-Blicks C. Probiotics and oral health effects in children. Int J Paediatr Dent. 2008;18:3–10.

  33. Twetman S, Derawi B, Keller M, et al. Short-term effect of chewing gums containing probiotic Lactobacillus reuteri on the levels of inflammatory mediators in gingival crevicular fluid. Acta Odontol Scand. 2009;67:19–24.

  34. Vicario M, Santos A, Violant D, et al. Clinical changes in periodontal subjects with the probiotic Lactobacillus reuteri Prodentis: a preliminary randomized clinical trial. Acta Odontol Scand. 2013;71:813–9.

  35. Vivekananda MR, Vandana KL, Bhat KG. Effect of the probiotic Lactobacilli reuteri (Prodentis) in the management of periodontal disease: a preliminary randomized clinical trial. J Oral Microbiol. 2010;2:5344.

  36. Wescombe PA, Burton JP, Cadieux PA, et al. Megaplasmids encode differing combinations of antibiotics in Streptococcus salivarius. Antonie Van Leeuwenhoek Van Leeuwenhoek. 2006;90:269–80.

Download references

Acknowledgements

The Authors are grateful to Dr Veronica Cappa for the statistical support.

Author information

Correspondence to E. Bardellini.

Ethics declarations

Conflict of interest

The Authors declare that they have no conflict of interest.

Ethical approval

This study did not involve any human participants or animals.

Informed consent

This study did not need informed consent from the patients, being an in vitro study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gobbi, E., De Francesco, M.A., Piccinelli, G. et al. In vitro inhibitory effect of two commercial probiotics on chromogenic actinomycetes. Eur Arch Paediatr Dent (2020). https://doi.org/10.1007/s40368-020-00512-2

Download citation

Keywords

  • Aggregatibacter actinomycetemcomitans
  • Actinomyces naeslundii
  • Streptococcus salivarius M18
  • Lactobacillus reuteri
  • Black stain