European Archives of Paediatric Dentistry

, Volume 18, Issue 3, pp 163–169 | Cite as

Effect of 10% cerium chloride on artificial caries lesions of human enamel evaluated using quantitative light-induced fluorescence: an in vitro study

  • R. JaisinghEmail author
  • R. Shanbhog
  • B. Nandlal
  • M. Thippeswamy
Original Scientific Article



To evaluate the effect of 10% cerium chloride intervention on pre-demineralised human enamel subjected to cycles of de- and remineralisation.


This was an in vitro, comparative type study of 60 human enamel samples that were randomly divided into control and test groups. The samples were then subjected to a cycle of demineralisation followed by intervention with respective treatment solutions (control group: placebo solution; test: 10% cerium chloride) for 30 s under constant agitation and then to a 2nd cycle of demineralisation followed by remineralisation using artificial saliva. After the first and second cycles of demineralisation (4th and 8th day) and a cycle of remineralisation (22nd day), the samples were evaluated for fluorescence values using a quantitative light-induced fluorescence camera. The data was analysed using paired t test and ANOVA.


Comparing the fluorescence values and mean difference of lesion area between the first cycle of demineralisation to the cycle of remineralisation and the second cycle of demineralisation to the cycle of remineralisation, the test group showed a statistically significant reduction in loss of fluorescence values and lesion area compared to the control group (p < 0.001). Mean fluorescence values and lesion area comparison between cycles of de- and remineralisation for control and test groups (inter-group comparison) showed a statistically significant difference (p < 0.001).


Cerium chloride alone reduced demineralisation and improved remineralisation of artificial caries lesions in human enamel when subjected to pH cycling in vitro.


Cerium chloride Artificial caries Remineralisation Quantitative light-induced fluorescence 


  1. Aleksejūniene J, Holst D, Balciūniene I. Factors influencing the caries decline in Lithuanian adolescents–trends in the period 1993–2001. Eur J Oral Sci. 2004;112:3–7.CrossRefPubMedGoogle Scholar
  2. Carvalho JC, Van Nieuwenhuysen JP, D’Hoore W. The decline in dental caries among Belgian children between 1983 and 1998. Community Dent Oral Epidemiol. 2001;29:55–61. doi: 10.1034/j.1600-0528.2001.00009.x.CrossRefPubMedGoogle Scholar
  3. Cochrane NJ, Walker GD, Manton DJ, Reynolds EC. Comparison of quantitative light-induced fluorescence, digital photography and transverse microradiography for quantification of enamel remineralization. Aust Dent J. 2012;57:271–6. doi: 10.1111/j.1834-7819.2012.01706.x.CrossRefPubMedGoogle Scholar
  4. Featherstone JD, Zero DT. An in situ model for simultaneous assessment of inhibition of demineralization and enhancement of remineralization. J Dent Res. 1992;71:804–10.PubMedGoogle Scholar
  5. Fejerskov O, Larsen MJ, Richards A, Baelum V. Dental tissue effects of fluoride. Adv Dent Res. 1994;8:15–31.CrossRefPubMedGoogle Scholar
  6. Forsman B. Early supply of fluoride and enamel fluorosis. Eur J Oral Sci. 1977;85:22–30. doi: 10.1111/j.1600-0722.1977.tb00527.x.CrossRefGoogle Scholar
  7. Griffin SO, Regnier E, Griffin PM, Huntley V. Effectiveness of fluoride in preventing caries in adults. J Dent Res. 2007;86:410–5. doi: 10.1177/154405910708600504.CrossRefPubMedGoogle Scholar
  8. Kidd EAM, Richards A, Thylstrup A, Fejerskov O. The susceptibility of “young” and “old” human enamel to artificial caries in vitro. Caries Res. 1984;18:226–30. doi: 10.1159/000260769.CrossRefPubMedGoogle Scholar
  9. Kiss J, Bánóczy B, Fehérváry E, Fehérváry Z, Albrecht M. Production of cerium-apatite in sound and carious dental enamel under in vitro conditions. Acta Morphol Hung. 1989;38:61–70.Google Scholar
  10. Luoma H, Nykänen I, Seppä L, et al. Protection by F, I, Sr, and combinations against fermentation attack by Streptococcus sobrinus artificial plaque on bovine enamel. Caries Res. 1989;23:5–13. doi: 10.1159/000261147.CrossRefPubMedGoogle Scholar
  11. Mehta R, Nandlal B, Prashanth S. Comparative evaluation of remineralization potential of casein phosphopeptide-amorphous calcium phosphate and casein phosphopeptide-amorphous calcium phosphate fluoride on artificial enamel white spot lesion: an in vitro light fluorescence study. Indian J Dent Res. 2013;24:681. doi: 10.4103/0970-9290.127610.CrossRefPubMedGoogle Scholar
  12. Puig-Silla M, Montiel-Company J-M, Almerich-Silla J-M. Comparison of the remineralizing effect of a sodium fluoride mouthrinse versus a sodium monofluorophosphate and calcium mouthrinse: an in vitro study. Med Oral Patol Oral Cir Bucal. 2009;14:E257–62.PubMedGoogle Scholar
  13. Sato T, Niwa M. Cariostatic mechanisms of fluoride and its effects on human beings. Nihon Rinsho Jpn J Clin Med. 1996;54:67–72.Google Scholar
  14. Sato Y, Sato T, Niwa M, Aoki H. Precipitation of octacalcium phosphates on artificial enamel in artificial saliva. J Mater Sci Mater Med. 2006;17:1173–7. doi: 10.1007/s10856-006-0545-4.CrossRefPubMedGoogle Scholar
  15. Schmidlin PR, Tchouboukov A, Wegehaupt FJ, Weber FE. Effect of cerium chloride application on fibroblast and osteoblast proliferation and differentiation. Arch Oral Biol. 2012;57:892–7. doi: 10.1016/j.archoralbio.2012.01.010.CrossRefPubMedGoogle Scholar
  16. Shanbhog R, Nikitha BS, Nandlal B, Thippeswamy M. Effect of dentifrice of varying fluoride concentration on surface microhardness of fluorosed enamel: an in vitro study. Eur Arch Paediatr Dent. 2016;17:257–64. doi: 10.1007/s40368-016-0237-9.CrossRefPubMedGoogle Scholar
  17. Shimomura H, Tsutsumi S, Mizobuchi J, et al. Experimental studies on acute toxicity of rare earth elements (author’s transl). Shika Gakuho Dent Sci Rep. 1980;80:1303–7.Google Scholar
  18. ten Bosch JJ, Angmar-Månsson B. A review of quantitative methods for studies of mineral content of intra-oral caries lesions. J Dent Res. 1991;70:2–14.CrossRefPubMedGoogle Scholar
  19. Thuy TT, Nakagaki H, Kato K, et al. Effect of strontium in combination with fluoride on enamel remineralization in vitro. Arch Oral Biol. 2008;53:1017–22. doi: 10.1016/j.archoralbio.2008.06.005.CrossRefPubMedGoogle Scholar
  20. Wegehaupt FJ, Sener B, Attin T, Schmidlin PR. Application of cerium chloride to improve the acid resistance of dentine. Arch Oral Biol. 2010;55:441–6. doi: 10.1016/j.archoralbio.2010.03.016.CrossRefPubMedGoogle Scholar
  21. Wegehaupt FJ, Sener B, Attin T, Schmidlin PR. Anti-erosive potential of amine fluoride, cerium chloride and laser irradiation application on dentine. Arch Oral Biol. 2011;56:1541–7. doi: 10.1016/j.archoralbio.2011.06.010.CrossRefPubMedGoogle Scholar
  22. Wegehaupt FJ, Buchalla W, Sener B, Attin T, Schmidlin PR. Cerium chloride reduces enamel lesion initiation and progression in vitro. Caries Res. 2014;48:45–50. doi: 10.1159/000351691.CrossRefPubMedGoogle Scholar
  23. Yassen GH, Lippert F, Eckert G, Eder J, Zandoná AF. The effect of strontium and combinations of strontium and fluoride on the remineralization of artificial caries lesions in vitro. Quintessence Int Berl Ger. 2012;1985(43):e95–103.Google Scholar

Copyright information

© European Academy of Paediatric Dentistry 2017

Authors and Affiliations

  • R. Jaisingh
    • 1
    Email author
  • R. Shanbhog
    • 1
  • B. Nandlal
    • 1
  • M. Thippeswamy
    • 2
  1. 1.Department of Pedodontics, JSS Dental College and HospitalJSS UniversityMysoreIndia
  2. 2.Department of Community Dentistry, JSS Dental College and HospitalJSS UniversityMysoreIndia

Personalised recommendations