Advertisement

Clinical and Translational Imaging

, Volume 7, Issue 4, pp 285–294 | Cite as

PET biomarkers and probes for treatment response assessment in glioblastoma: a work in progress

  • Daniela Salvatore
  • Alessia Lo Dico
  • Cristina Martelli
  • Cecilia Diceglie
  • Luisa OttobriniEmail author
Mini-Review
Part of the following topical collections:
  1. Neuroimaging

Abstract

Aims

Several pharmacological approaches are used for glioblastoma (GBM) treatment, each hinging on the triggering of different biochemical or functional processes; the development of specific and sensitive PET procedures for monitoring their efficacy proceeds with the identification of such new treatments. This paper presents an overview of the available “tumour biomarker”–“PET probe” pairs (i.e. the combination of a tumour target and a selective PET radiopharmaceutical) for monitoring the different treatments for GBM tested in human subjects.

Methods

A bibliographic search for papers on PET imaging for assessing treatment response in GBM was performed in PubMed and Web of science databases using the following string: (PET or positron) and (glioblastoma) and (treatment) and (monitoring); papers dealing with studies in human subjects published over the last 10 years were reviewed. Further papers were extracted from the bibliography of the reviewed papers.

Results

In this review, we highlight through a detailed table that in spite of the current use in GBM patients of a large variety of PET radiopharmaceuticals, very few papers have specifically addressed the issue of the optimization and use of imaging biomarker–probe pairs for the assessment of treatment response in GBM. While new PET probes are being developed for assessing old and new GBM biomarkers, very few clinical trials have been performed to this end.

Conclusion

Whereas it appears that the use of old and new PET radiopharmaceuticals can advance the non-invasive assessment of treatment response in GBM, the optimal match of biomarker–probe pairs although highly needed is still being sought in particular with the active development of new highly specific treatments characterized by novel antitumoral targeting strategies.

Keywords

Biomarkers Response assessment PET imaging Molecular targets Radiotracers 

Notes

Acknowledgements

Dr. Salvatore was supported by a Fellowship from the Doctorate School in Molecular and Translational Medicine of University of Milan, Italy. This work was partly supported in part by FP7-funded INSERT project (HEALTH-2012- INNOVATION-1, GA305311). The authors specify that no commercial companies participated or contributed to manuscript preparation.

Author contributions

DS: literature search and writing. ALD: literature analysis, review and writing. CM: writing and review. CD: content planning and review. LO: content planning, review, editing, and final revision.

Compliance with ethical standards

Conflict of interest

The authors whose names are listed immediately below certify that they have no affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speakers’ bureaus; membership, employment, consultancies, stock ownership, or other equity interest; and expert testimony or patent-licensing arrangements), or non-financial interest (such as personal or professional relationships, affiliations, knowledge or beliefs) in the subject matter or materials discussed in this manuscript: Daniela Salvatore, Alessia Lo Dico, Cristina Martelli, Cecilia Diceglie and Luisa Ottobrini

Statement on the welfare of animals/human

This article does not contain any new study with human or animal subjects performed by any of the authors. Only previously published results have been reported.

Ethical approval

This article does not contain any new study with human participants or animals performed by any of the authors. Only previously published results have been reported.

References

  1. 1.
    Wen PY, Kesari S (2008) Malignant gliomas in adults. N Engl J Med 359:492–507.  https://doi.org/10.1056/NEJMra0708126 Google Scholar
  2. 2.
    Stupp R, Mason WP, van den Bent MJ et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996.  https://doi.org/10.1056/NEJMoa043330 Google Scholar
  3. 3.
    Aldape K, Zadeh G, Mansouri S et al (2015) Glioblastoma: pathology, molecular mechanisms and markers. Acta Neuropathol 129:829–848.  https://doi.org/10.1007/s00401-015-1432-1 Google Scholar
  4. 4.
    Thust SC, Heiland S, Falini A et al (2018) Glioma imaging in Europe: a survey of 220 centres and recommendations for best clinical practice. Eur Radiol 28:3306.  https://doi.org/10.1007/s00330-018-5314-5 Google Scholar
  5. 5.
    Hattingen E, Pilatus U (2016) Brain tumor imaging. Springer, BerlinGoogle Scholar
  6. 6.
    Albert NL, Weller M, Suchorska B et al (2016) Response assessment in neuro-oncology working group and European Association for Neuro-Oncology recommendations for the clinical use of PET imaging in gliomas. Neuro Oncol 18:1199–1208.  https://doi.org/10.1093/neuonc/now058 Google Scholar
  7. 7.
    Heiss W-D (2014) PET bei gliomen. Nuklearmedizin 53:163–171.  https://doi.org/10.3413/Nukmed-0662-14-04 Google Scholar
  8. 8.
    Dhermain F (2014) Radiotherapy of high-grade gliomas: current standards and new concepts, innovations in imaging and radiotherapy, and new therapeutic approaches. Chin J Cancer 33:16–24.  https://doi.org/10.5732/cjc.013.10217 Google Scholar
  9. 9.
    Nikaki A, Angelidis G, Efthimiadou R et al (2017) 18F-fluorothymidine PET imaging in gliomas: an update. Ann Nucl Med 31:495–505.  https://doi.org/10.1007/s12149-017-1183-2 Google Scholar
  10. 10.
    Hadziahmetovic M, Shirai K, Chakravarti A (2011) Recent advancements in multimodality treatment of gliomas. Future Oncol 7:1169–1183.  https://doi.org/10.2217/fon.11.102 Google Scholar
  11. 11.
    O’Connor JP, Aboagye EO, Adams JE, Aerts HJ, Barrington SF, Beer AJ et al (2017) Imaging biomarker roadmap for cancer studies. Nat Rev Clin Oncol 14(3):169–186.  https://doi.org/10.1038/nrclinonc.2016.162 (PubMed PMID: 27725679; PubMed Central PMCID: PMC5378302) Google Scholar
  12. 12.
    Macdonald DR, Cascino TL, Schold SC, Cairncross JG (1990) Response criteria for phase II studies of supratentorial malignant glioma. J Clin Oncol 8:1277–1280.  https://doi.org/10.1200/JCO.1990.8.7.1277 Google Scholar
  13. 13.
    Wen PY, Macdonald DR, Reardon DA et al (2010) Updated response assessment criteria for high-grade gliomas: response assessment in Neuro-Oncology Working Group. J Clin Oncol 28:1963–1972.  https://doi.org/10.1200/JCO.2009.26.3541 Google Scholar
  14. 14.
    Lohmann P, Lerche C, Bauer EK, Steger J, Stoffels G, Blau T, Dunkl V, Kocher M, Viswanathan S, Filss CP, Stegmayr C, Ruge MI, Neumaier B, Shah NJ, Fink GR, Langen KJ, Galldiks N (2018) Predicting IDH genotype in gliomas using FET PET radiomics. Sci Rep 8(1):13328.  https://doi.org/10.1038/s41598-018-31806-7 (PMID: 30190592 Free PMC Article) Google Scholar
  15. 15.
    Papp L, Pötsch N, Grahovac M, Schmidbauer V, Woehrer A, Preusser M, Mitterhauser M, Kiesel B, Wadsak W, Beyer T, Hacker M, Traub-Weidinger T (2018) Glioma survival prediction with combined analysis of in vivo 11C-MET PET features, ex vivo features, and patient features by supervised machine learning. J Nucl Med 59(6):892–899.  https://doi.org/10.2967/jnumed.117.202267 (Epub 2017 Nov 24 PMID: 29175980) Google Scholar
  16. 16.
    Lohmann P, Kocher M, Steger J, Galldiks N (2018) Radiomics derived from amino-acid PET and conventional MRI in patients with high-grade gliomas. Q J Nucl Med Mol Imaging 62(3):272–280Google Scholar
  17. 17.
    Yan Y, Xu Z, Dai S et al (2016) Targeting autophagy to sensitive glioma to temozolomide treatment. J Exp Clin Cancer Res 35:23.  https://doi.org/10.1186/s13046-016-0303-5 Google Scholar
  18. 18.
    Knizhnik AV, Roos WP, Nikolova T et al (2013) Survival and death strategies in glioma cells: autophagy, senescence and apoptosis triggered by a single type of temozolomide-induced DNA damage. PLoS One 8:e55665.  https://doi.org/10.1371/journal.pone.0055665 Google Scholar
  19. 19.
    Lo Dico A, Martelli C, Diceglie C et al (2018) Hypoxia-inducible factor-1α activity as a switch for glioblastoma responsiveness to temozolomide. Front Oncol 8:249.  https://doi.org/10.3389/fonc.2018.00249 Google Scholar
  20. 20.
    Lo Dico A, Martelli C, Valtorta S et al (2015) Identification of imaging biomarkers for the assessment of tumour response to different treatments in a preclinical glioma model. Eur J Nucl Med Mol Imaging 42:1093–1105.  https://doi.org/10.1007/s00259-015-3040-7 Google Scholar
  21. 21.
    Lo Dico A, Valtorta S, Martelli C et al (2014) Validation of an engineered cell model for in vitro and in vivo HIF-1α evaluation by different imaging modalities. Mol Imaging Biol 16:210–223.  https://doi.org/10.1007/s11307-013-0669-0 Google Scholar
  22. 22.
    Lee J-W, Bae S-H, Jeong J-W et al (2004) Hypoxia-inducible factor (HIF-1)alpha: its protein stability and biological functions. Exp Mol Med 36:1–12.  https://doi.org/10.1038/emm.2004.1 Google Scholar
  23. 23.
    Chinot OL, Wick W, Mason W et al (2014) Bevacizumab plus radiotherapy-temozolomide for newly diagnosed glioblastoma. N Engl J Med 370:709–722.  https://doi.org/10.1056/NEJMoa1308345 Google Scholar
  24. 24.
    Gilbert MR, Dignam JJ, Armstrong TS et al (2014) A randomized trial of bevacizumab for newly diagnosed glioblastoma. N Engl J Med 370:699–708.  https://doi.org/10.1056/NEJMoa1308573 Google Scholar
  25. 25.
    Westphal M, Maire CL, Lamszus K (2017) EGFR as a target for glioblastoma treatment: an unfulfilled promise. CNS Drugs 31:723–735.  https://doi.org/10.1007/s40263-017-0456-6 Google Scholar
  26. 26.
    Kelly E, Russell SJ (2007) History of oncolytic viruses: genesis to genetic engineering. Mol Ther 15:651–659.  https://doi.org/10.1038/sj.mt.6300108 Google Scholar
  27. 27.
    Naik JD, Twelves CJ, Selby PJ et al (2011) Immune recruitment and therapeutic synergy: keys to optimizing oncolytic viral therapy? Clin Cancer Res 17:4214–4224.  https://doi.org/10.1158/1078-0432.CCR-10-2848 Google Scholar
  28. 28.
    Brown CE, Alizadeh D, Starr R et al (2016) Regression of glioblastoma after chimeric antigen receptor T-cell therapy. N Engl J Med 375:2561–2569.  https://doi.org/10.1056/NEJMoa1610497 Google Scholar
  29. 29.
    Ahmed N, Brawley V, Hegde M et al (2017) HER2-specific chimeric antigen receptor-modified virus-Specific T cells for progressive glioblastoma. JAMA Oncol 3:1094.  https://doi.org/10.1001/jamaoncol.2017.0184 Google Scholar
  30. 30.
    Migliorini D, Dietrich P-Y, Stupp R et al (2018) CAR T-cell therapies in glioblastoma: a first look. Clin Cancer Res 24:535–540.  https://doi.org/10.1158/1078-0432.CCR-17-2871 Google Scholar
  31. 31.
    Wolchok JD, Hoos A, O’Day S et al (2009) Guidelines for the evaluation of immune therapy activity in solid tumors: immune-related response criteria. Clin Cancer Res 15:7412–7420.  https://doi.org/10.1158/1078-0432.CCR-09-1624 Google Scholar
  32. 32.
    Okada H, Weller M, Huang R et al (2015) Immunotherapy response assessment in neuro-oncology: a report of the RANO working group. Lancet Oncol 16:e534–e542.  https://doi.org/10.1016/S1470-2045(15)00088-1 Google Scholar
  33. 33.
    Buchbinder EI, Desai A (2016) CTLA-4 and PD-1 pathways. Am J Clin Oncol 39:98–106.  https://doi.org/10.1097/COC.0000000000000239 Google Scholar
  34. 34.
    Chamberlain MC, Kim BT (2017) Nivolumab for patients with recurrent glioblastoma progressing on bevacizumab: a retrospective case series. J Neurooncol 133:561–569.  https://doi.org/10.1007/s11060-017-2466-0 Google Scholar
  35. 35.
    Blumenthal DT, Yalon M, Vainer GW et al (2016) Pembrolizumab: first experience with recurrent primary central nervous system (CNS) tumors. J Neurooncol 129:453–460.  https://doi.org/10.1007/s11060-016-2190-1 Google Scholar
  36. 36.
    Reardon DA, Omuro A, Brandes AA et al (2017) OS10.3 randomized phase 3 study evaluating the efficacy and safety of nivolumab vs bevacizumab in patients with recurrent glioblastoma: checkMate 143. Neuro Oncol 19:iii21.  https://doi.org/10.1093/neuonc/nox036.071 Google Scholar
  37. 37.
    Mertens K, Acou M, Van Hauwe J, De Ruyck I, Van den Broecke C, Kalala JO, D’Asseler Y, Goethals I (2013) Less validation of 18F-FDG PET at conventional and delayed intervals for the discrimination of high-grade from low-grade gliomas: a stereotactic PET and MRI study. Clin Nucl Med 38(7):495–500Google Scholar
  38. 38.
    The Royal College of Radiologists, Royal College of Physicians of London, Royal College of Physicians of Edinburgh et al (2016) Evidence-based indications for the use of PET-CT in the United Kingdom 2016. Clin Radiol 71:e171–e188.  https://doi.org/10.1016/j.crad.2016.05.001 Google Scholar
  39. 39.
    Kobayashi K, Ohnishi A, Promsuk J et al (2008) Enhanced tumor growth elicited by l-type amino acid transporter 1 in human malignant glioma cells. Neurosurgery 62:493–504.  https://doi.org/10.1227/01.neu.0000316018.51292.19 Google Scholar
  40. 40.
    Galldiks N, Langen KJ (2017) Amino acid PET in neuro-oncology: applications in the clinic. Expert Rev Anticancer Ther 17(5):395–397.  https://doi.org/10.1080/14737140.2017.1302799 (Epub 2017 Mar 11) Google Scholar
  41. 41.
    Galldiks N, Langen K-J (2016) Amino acid PET—an imaging option to identify treatment response, posttherapeutic effects, and tumor recurrence? Front Neurol 7:120.  https://doi.org/10.3389/fneur.2016.00120 Google Scholar
  42. 42.
    Galldiks N, Langen K-J, Holy R et al (2012) Assessment of treatment response in patients with glioblastoma using O-(2-18F-Fluoroethyl)-l-Tyrosine PET in comparison to MRI. J Nucl Med 53:1048–1057.  https://doi.org/10.2967/jnumed.111.098590 Google Scholar
  43. 43.
    Galldiks N, Dunkl V, Stoffels G et al (2015) Diagnosis of pseudoprogression in patients with glioblastoma using O-(2-[18F]fluoroethyl)-l-tyrosine PET. Eur J Nucl Med Mol Imaging 42:685–695.  https://doi.org/10.1007/s00259-014-2959-4 Google Scholar
  44. 44.
    Galldiks N, Dunkl V, Ceccon G, Tscherpel C, Stoffels G, Law I, Henriksen OM, Muhic A, Poulsen HS, Steger J, Bauer EK, Lohmann P, Schmidt M, Shah NJ, Fink GR, Langen KJ (2018) Early treatment response evaluation using FET PET compared to MRI in glioblastoma patients at first progression treated with bevacizumab plus lomustine. Eur J Nucl Med Mol Imaging 45(13):2377–2386.  https://doi.org/10.1007/s00259-018-4082-4 (Epub 2018 Jul 7 PubMed PMID: 29982845) Google Scholar
  45. 45.
    Harris RJ, Cloughesy TF, Pope WB et al (2012) 18F-FDOPA and 18F-FLT positron emission tomography parametric response maps predict response in recurrent malignant gliomas treated with bevacizumab. Neuro Oncol 14:1079–1089.  https://doi.org/10.1093/neuonc/nos141 Google Scholar
  46. 46.
    Schwarzenberg J, Czernin J, Cloughesy TF et al (2014) Treatment response evaluation using 18F-FDOPA PET in patients with recurrent malignant glioma on bevacizumab therapy. Clin Cancer Res 20:3550–3559.  https://doi.org/10.1158/1078-0432.CCR-13-1440 Google Scholar
  47. 47.
    Hutterer M, Nowosielski M, Putzer D, Waitz D, Tinkhauser G, Kostron H et al (2011) O-(2-18F-fluoroethyl)-l-tyrosine PET predicts failure of antiangiogenic treatment in patients with recurrent high-grade glioma. J Nucl Med Off Publ Soc Nucl Med 52:856–864.  https://doi.org/10.2967/jnumed.110.086645 Google Scholar
  48. 48.
    Galldiks N, Rapp M, Stoffels G et al (2013) Response assessment of bevacizumab in patients with recurrent malignant glioma using [18F]Fluoroethyl-L-tyrosine PET in comparison to MR. Eur J Nucl Med Mol Imaging 40:22.  https://doi.org/10.1007/s00259-012-2251. (Publisher Name Springer-Verlag Print ISSN1619-7070) Google Scholar
  49. 49.
    Lukas RV, Juhász C, Wainwright DA et al (2018) Imaging tryptophan uptake with positron emission tomography in glioblastoma patients treated with indoximod. J Neurooncol.  https://doi.org/10.1007/s11060-018-03013-x Google Scholar
  50. 50.
    Kondo A, Ishii H, Aoki S et al (2016) Phase IIa clinical study of [18F]fluciclovine: efficacy and safety of a new PET tracer for brain tumors. Ann Nucl Med 30:608–618.  https://doi.org/10.1007/s12149-016-1102-y Google Scholar
  51. 51.
    Parent EE, Benayoun M, Ibeanu I et al (2018) [18F]Fluciclovine PET discrimination between high- and low-grade gliomas. EJNMMI Res 8:67.  https://doi.org/10.1186/s13550-018-0415-3 Google Scholar
  52. 52.
    Venneti S, Dunphy MP, Zhang H et al (2015) Glutamine-based PET imaging facilitates enhanced metabolic evaluation of gliomas in vivo. Sci Transl Med 7:274ra17.  https://doi.org/10.1126/scitranslmed.aaa1009 Google Scholar
  53. 53.
    Luo W, Hu H, Chang R et al (2011) Pyruvate kinase M2 Is a PHD3-stimulated coactivator for hypoxia-inducible factor 1. Cell 145:732–744.  https://doi.org/10.1016/j.cell.2011.03.054 Google Scholar
  54. 54.
    Beinat C, Alam IS, James ML et al (2017) Development of [18F]DASA-23 for imaging tumor glycolysis through noninvasive measurement of pyruvate kinase M2. Mol Imaging Biol 19:665–672.  https://doi.org/10.1007/s11307-017-1068-8 Google Scholar
  55. 55.
    Chen W (2007) Clinical applications of PET in brain tumors. J Nucl Med 48:1468–1481.  https://doi.org/10.2967/jnumed.106.037689 Google Scholar
  56. 56.
    Zhao F, Cui Y, Li M et al (2014) Prognostic value of 3′-Deoxy-3′-18F-Fluorothymidine ([18F] FLT PET) in patients with recurrent malignant gliomas. Nucl Med Biol 41:710–715.  https://doi.org/10.1016/j.nucmedbio.2014.04.134 Google Scholar
  57. 57.
    Jacobs AH, Thomas A, Kracht LW et al (2005) 18F-fluoro-l-thymidine and 11C-methylmethionine as markers of increased transport and proliferation in brain tumors. J Nucl Med 46:1948–1958Google Scholar
  58. 58.
    Li W, Ma L, Wang X et al (2014) 11C-choline PET/CT tumor recurrence detection and survival prediction in post-treatment patients with high-grade gliomas. Tumor Biol 35:12353–12360.  https://doi.org/10.1007/s13277-014-2549-x Google Scholar
  59. 59.
    Bolcaen J, Acou M, Boterberg T et al (2017) 18F-FCho PET and MRI for the prediction of response in glioblastoma patients according to the RANO criteria. Nucl Med Commun 38:242–249.  https://doi.org/10.1097/MNM.0000000000000638 Google Scholar
  60. 60.
    Su Z, Herholz K, Gerhard A, Roncaroli F, Du Plessis D, Jackson A, Turkheimer F, Hinz R (2013) [11C]-(R)PK11195 tracer kinetics in the brain of glioma patients and a comparison of two referencing approaches. Eur J Nucl Med Mol Imaging 40(9):1406–1419.  https://doi.org/10.1007/s00259-013-2447-2 (PubMed PMID: 23715902; PubMed Central PMCID: PMC3738844) Google Scholar
  61. 61.
    Albert NL, Unterrainer M, Fleischmann DF et al (2017) TSPO PET for glioma imaging using the novel ligand 18F-GE-180: first results in patients with glioblastoma. Eur J Nucl Med Mol Imaging 44:2230.  https://doi.org/10.1007/s00259-017-3799-9 Google Scholar
  62. 62.
    Quartuccio N, Asselin MC (2018) The validation path of hypoxia PET imaging: focus on brain tumours. Curr Med Chem 25(26):3074–3095.  https://doi.org/10.2174/0929867324666171116123702 (PubMed PMID: 29149829) Google Scholar
  63. 63.
    Bekaert L, Valable S, Lechapt-Zalcman E et al (2017) [18F]-FMISO PET study of hypoxia in gliomas before surgery: correlation with molecular markers of hypoxia and angiogenesis. Eur J Nucl Med Mol Imaging 44:1383.  https://doi.org/10.1007/s00259-017-3677-5 Google Scholar
  64. 64.
    Kim W, Le TM, Wei L et al (2016) [18 F]CFA as a clinically translatable probe for PET imaging of deoxycytidine kinase activity. Proc Natl Acad Sci 113:4027–4032.  https://doi.org/10.1073/pnas.1524212113 Google Scholar
  65. 65.
    Antonios JP, Soto H, Everson RG et al (2017) Detection of immune responses after immunotherapy in glioblastoma using PET and MRI. Proc Natl Acad Sci 114:10220–10225.  https://doi.org/10.1073/pnas.1706689114 Google Scholar
  66. 66.
    Yaghoubi SS, Jensen MC, Satyamurthy N et al (2009) Noninvasive detection of therapeutic cytolytic T cells with 18F-FHBG PET in a patient with glioma. Nat Clin Pract Oncol 6:53–58.  https://doi.org/10.1038/ncponc1278 Google Scholar
  67. 67.
    Keu KV, Witney TH, Yaghoubi S et al (2017) Reporter gene imaging of targeted T cell immunotherapy in recurrent glioma. Sci Transl Med 9:eaag2196.  https://doi.org/10.1126/scitranslmed.aag2196 Google Scholar
  68. 68.
    Wong ANM, McArthur GA, Hofman MS, Hicks RJ (2017) The advantages and challenges of using FDG PET/CT for response assessment in melanoma in the era of targeted agents and immunotherapy. Eur J Nucl Med Mol Imaging 44:67–77.  https://doi.org/10.1007/s00259-017-3691-7 Google Scholar
  69. 69.
    Seith F, Forschner A, Schmidt H et al (2018) 18F-FDG-PET detects complete response to PD1-therapy in melanoma patients two weeks after therapy start. Eur J Nucl Med Mol Imaging 45:95–101.  https://doi.org/10.1007/s00259-017-3813-2 Google Scholar
  70. 70.
    Dercle L, Seban R-D, Lazarovici J et al (2018) 18 F-FDG PET and CT scans detect new imaging patterns of response and progression in patients with hodgkin lymphoma treated by anti-programmed death 1 immune checkpoint inhibitor. J Nucl Med 59:15–24.  https://doi.org/10.2967/jnumed.117.193011 Google Scholar
  71. 71.
    Dercle L, Ammari S, Seban R-D et al (2018) Kinetics and nadir of responses to immune checkpoint blockade by anti-PD1 in patients with classical Hodgkin lymphoma. Eur J Cancer 91:136–144.  https://doi.org/10.1016/j.ejca.2017.12.015 Google Scholar
  72. 72.
    Broos K, Lecocq Q, Raes G et al (2018) Noninvasive imaging of the PD-1:PD-L1 immune checkpoint: embracing nuclear medicine for the benefit of personalized immunotherapy. Theranostics 8:3559–3570.  https://doi.org/10.7150/thno.24762 Google Scholar
  73. 73.
    Kebir S, Rauschenbach L, Galldiks N et al (2016) Dynamic O-(2-[18F]fluoroethyl)-l-tyrosine PET imaging for the detection of checkpoint inhibitor-related pseudoprogression in melanoma brain metastases. Neuro Oncol 18:1462–1464.  https://doi.org/10.1093/neuonc/now154 Google Scholar

Copyright information

© Italian Association of Nuclear Medicine and Molecular Imaging 2019

Authors and Affiliations

  1. 1.Department of Pathophysiology and TransplantationUniversity of MilanSegrateItaly
  2. 2.Molecular Bioimaging and Physiology (IBFM)CNRSegrateItaly

Personalised recommendations