Clinical and Translational Imaging

, Volume 7, Issue 2, pp 83–98 | Cite as

The role of molecular imaging in the frame of the revised dementia with Lewy body criteria

  • Stelvio SestiniEmail author
  • Pierpaolo Alongi
  • Valentina Berti
  • Maria Lucia Calcagni
  • Diego Cecchin
  • Agostino Chiaravalloti
  • Andrea Chincarini
  • Angelina Cistaro
  • Ugo Paolo Guerra
  • Sabina Pappatà
  • Pietro Tiraboschi
  • Flavio Nobili
Expert Review
Part of the following topical collections:
  1. Neuroimaging



Recommendations about clinical and pathologic diagnosis of dementia with Lewy bodies (DLB) have been recently refined by the DLB Consortium. Substantial new information has been incorporated with increased diagnostic weighting given to molecular imaging biomarkers. The present work attempted to present a comprehensive evaluation of the role of molecular imaging in the frame of the revised DLB criteria.


To this end, we briefly review the molecular imaging tools in the fourth Consensus report of the DLB Consortium, highlighting several indicative and supportive surrogate markers, including I-123 brain dopamine transporter (DaT), I-123 mIBG cardiac norepinephrine transporter (NeT) and brain F-18 fluorodeoxyglucose (FDG) imaging, as the main way to increase accuracy of ante-mortem diagnosis of probable or possible DLB.


Along with main neuropathological and clinical issues, we focus on the diagnostic performance and appropriate use of current available items included in the index by nuclear medicine physicians, namely a low DaT uptake, a low NeT expression in myocardial tissue, and reduced parieto-occipital metabolism on brain FDG-PET. Moreover, a critical summary of the current state of the art in pathological validation of other biomarkers including amyloid and tau-PET imaging is provided.


DLB Consortium clearly states that clinical diagnosis in clinical routine is suboptimal and gives more weight to molecular imaging biomarkers to offer a more objective information. Along with DaT, mIBG and FDG techniques, brain PET with more specific radiotracers could open a new scenario for an accurate evaluation of biomarkers involved in DLB.


DLB Molecular imaging DLB criteria MIBG imaging DaT imaging FDG-PET 


Compliance with ethical standards

Conflict of interest

The author declares no conflicts of interest; this paper does not contain results of studies performed by the author.


  1. 1.
    Jack CR Jr, Bennett DA, Blennow K et al (2018) NIA-AA research framework: toward a biological definition of Alzheimer’s disease. Alzheimer Dement 14(4):535–562Google Scholar
  2. 2.
    Okazaki H, Lipkin LE, Aronson SM (1961) Diffuse intracytoplasmic ganglionic inclusions (Lewy type) associated with progressive dementia and quadriparesis in flexion. J Neuropathol Exp Neurol 20:237–244Google Scholar
  3. 3.
    McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM (1984) Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology 34:939–944Google Scholar
  4. 4.
    McKeith IG, Galasko D, Kosaka K et al (1996) Consensus guidelines for the clinical and pathologic diagnosis of dementia with Lewy bodies (DLB): report of the consortium on DLB international workshop. Neurology 47(5):1113–1124Google Scholar
  5. 5.
    Vann Jones SA, O’Brien JT (2014) The prevalence and incidence of dementia with Lewy bodies: a systematic review of population and clinical studies. Psychol Med 44:673–683Google Scholar
  6. 6.
    Sakamoto F, Shiraishi S, Tsuda N, Hashimoto M, Tomiguchi S, Ikeda M, Yamashita Y (2017) Diagnosis of dementia with Lewy bodies: can 123I-IMP and 123I-MIBG scintigraphy yield new core features? Br J Radiol 90(1070):1–8Google Scholar
  7. 7.
    Hogan DB, Fiest KM, Roberts JI, Maxwell CJ, Dykeman J, Pringsheim T, Steeves T, Smith EE, Pearson D, Jetté N (2016) The prevalence and incidence of dementia with Lewy bodies: a systematic review. Can J Neurol Sci 43(S1):S83–S95Google Scholar
  8. 8.
    Gauthier S, Zhang H, Ng KP, Pascoal TA, Rosa-Neto P (2018) Impact of the biological definition of Alzheimer’s disease using amyloid, tau and neurodegeneration (ATN): what about the role of vascular changes, inflammation, Lewy body pathology? Transl Neurodegen 7:1–12Google Scholar
  9. 9.
    McKeith IG, Dickson DW, Lowe J et al (2005) Diagnosis and management of dementia with Lewy bodies: third report of the DLB Consortium. Neurology 65(12):1863–1872Google Scholar
  10. 10.
    McKeith IG, Boeve BF, Dickson DW et al (2017) Diagnosis and management of dementia with Lewy bodies: Fourth consensus report of the DLB Consortium 89(1):88–100Google Scholar
  11. 11.
    Mukaetova-Ladinska EB, McKeith IG (2006) Pathophysiology of synuclein aggregation in Lewy body disease. Mech Ageing Dev 127:188–202Google Scholar
  12. 12.
    Hansen LA (1997) The Lewy body variant of Alzheimer disease. J Neural Transm Suppl 51:83–93Google Scholar
  13. 13.
    Ballard C, Ziabreva I, Perry R, Larsen JP, O’Brien J, McKeith I, Perry E, Aarsland D (2006) Differences in neuropathologic characteristics across the Lewy body dementia spectrum. Neurology 67:1931–1934Google Scholar
  14. 14.
    Grothe MJ, Schuster C, Bauer F, Heinsen H, Prudlo J, Teipel SJ (2014) Atrophy of the cholinergic basal forebrain in dementia with Lewy bodies and Alzheimer’s disease dementia. J Neurol 261:1939–1948Google Scholar
  15. 15.
    Jellinger KA, Attems J (2008) Prevalence and impact of vascular and Alzheimer pathologies in Lewy body disease. Acta Neuropathol 115:427–436Google Scholar
  16. 16.
    Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82(4):239–259Google Scholar
  17. 17.
    Tiraboschi P, Attems J, Thomas A, Brown A, Jaros E, Lett DJ, Ossola M, Perry RH, Ramsay L, Walker L, McKeith IG (2015) Clinicians’ ability to diagnose dementia with Lewy bodies is not affected by beta-amyloid load. Neurology 84:496–499Google Scholar
  18. 18.
    Toledo JB, Gopal P, Raible K et al (2016) Pathological alpha-synuclein distribution in subjects with coincident Alzheimer’s and Lewy body pathology. Acta Neuropathol 131:393–409Google Scholar
  19. 19.
    Gomperts SN, Locascio JJ, Makaretz SJ et al (2016) Tau positron emission tomographic imaging in the Lewy body diseases. Jama Neurol 73:1334–1341Google Scholar
  20. 20.
    Goldman JG, Williams-Gray C, Barker RA, Duda JE, Galvin JE (2014) The spectrum of cognitive impairment in Lewy body diseases. Mov Disord 29(5):608–621Google Scholar
  21. 21.
    Hohl U, Tiraboschi P, Hansen LA, Thal LJ, Corey-Bloom J (2000) Diagnostic accuracy of dementia with Lewy bodies. Arch Neurol 57(3):347–351Google Scholar
  22. 22.
    Galvin JE, Duda JE, Kaufer DI, Lippa CF, Taylor A, Zarit SH (2010) Lewy body dementia: the caregiver experience of clinical care. Parkinsonism Relat Disord 16(6):388–392Google Scholar
  23. 23.
    Högl B, Stefani A, Videnovic A (2018) Idiopathic REM sleep behaviour disorder and neurodegeneration—an update. Nat Rev Neurol 14:40–55Google Scholar
  24. 24.
    Barone DA, Henchcliffe C (2018) Rapid eye movement sleep behavior disorder and the link to alpha-synucleinopathies. Clin Neurophysiol 129(8):1551–1564Google Scholar
  25. 25.
    Boeve BF, Molano JR, Ferman TJ et al (2011) Validation of the Mayo Sleep Questionnaire to screen for REM sleep behavior disorder in an aging and dementia cohort. Sleep Med 12(5):445–453Google Scholar
  26. 26.
    Ballard Grace J, McKeith I, Holmes C (1998) Neuroleptic sensitivity in dementia with Lewy bodies and Alzheimer’s disease. Lancet 351:1032–1033Google Scholar
  27. 27.
    Doty RL (1989) Influence of age and age-related diseases on olfactory function. Ann N Y Acad Sci 561:76–86Google Scholar
  28. 28.
    Briner HR, Simmen D (1999) Smell diskettes as screening test of olfaction. Rhinology 37(4):145–148Google Scholar
  29. 29.
    Walker MP, Ayre GA, Cummings JL, Wesnes K, McKeith IG, O’Brien JT, Ballard CG (2000) The clinician assessment of fluctuation and the one day fluctuation assessment scale. Two methods to assess fluctuating confusion in dementia. Br J Psychiatry 177:252–256Google Scholar
  30. 30.
    Postuma RB, Berg D, Stern M et al (2015) MDS clinical diagnostic criteria for Parkinson’s disease. Mov Disord 30:1591–1601Google Scholar
  31. 31.
    Donaghy PC, McKeith IG (2014) The clinical characteristics of dementia with Lewy bodies and a consideration of prodromal diagnosis. Alzheimers Res Ther 6(4):46–58Google Scholar
  32. 32.
    Rizzo G, Arcuti S, Copetti M, Alessandria M, Savica R, Fontana A, Liguori R, Logroscino G (2018) Accuracy of clinical diagnosis of dementia with Lewy bodies: a systematic review and meta-analysis. J Neurol Neurosurg Psychiatry 89(4):358–366Google Scholar
  33. 33.
    Stinton C, McKeith I, Taylor JP et al (2015) Pharmacological management of Lewy body dementia: a systematic review and meta-analysis. Am J Psychiatry 172(8):731–774Google Scholar
  34. 34.
    Walker Z, Costa DC, Ince P, McKeith IG, Katona CL (1999) In-vivo demonstration of dopaminergic degeneration in dementia with Lewy bodies. Lancet 354(9179):646–647Google Scholar
  35. 35.
    Walker Z, Costa DC, Walker RW et al (2002) Differentiation of dementia with Lewy bodies from Alzheimer’s disease using a dopaminergic presynaptic ligand. J Neurol Neurosurg Psychiatry 73(2):134–340Google Scholar
  36. 36.
    Tabet N, Walker Z, Mantle D, Costa D, Orrell M (2003) In vivo dopamine pre-synaptic receptors and antioxidant activities in patients with Alzheimer’s disease, dementia with Lewy bodies and in controls. A preliminary report. Dement Geriatr Cogn Disord 16(1):46–51Google Scholar
  37. 37.
    Walker RW, Walker Z (2009) Dopamine transporter single photon emission computerized tomography in the diagnosis of dementia with Lewy bodies. Mov Disord 24(Suppl 2):S754–S759Google Scholar
  38. 38.
    McKeith I, O’Brien J, Walker Z et al (2007) Sensitivity and specificity of dopamine transporter imaging with 123I-FP-CIT SPECT in dementia with Lewy bodies: a phase III, multicentre study. Lancet Neurol 6(4):305–313Google Scholar
  39. 39.
    O’Brien JT, McKeith IG, Walker Z et al (2009) Diagnostic accuracy of 123I-FP-CIT SPECT in possible dementia with Lewy bodies. Br J Psychiatry 194(1):34–39Google Scholar
  40. 40.
    Walker Z, Jaros E, Walker RW et al (2007) Dementia with Lewy bodies: a comparison of clinical diagnosis, FP-CIT single photon emission computed tomography imaging and autopsy. J Neurol Neurosurg Psychiatry 78(11):1176–1181Google Scholar
  41. 41.
    Walker Z, Costa DC, Walker RW et al (2004) Striatal dopamine transporter in dementia with Lewy bodies and Parkinson disease: a comparison. Neurology 62(9):1568–1572Google Scholar
  42. 42.
    Costa DC, Walker Z, Walker RW, Fontes FR (2003) Dementia with Lewy bodies versus Alzheimer’s disease: role of dopamine transporter imaging. Mov Disord 18(Suppl 7):S34–S38Google Scholar
  43. 43.
    Walker Z, Cummings JL (2012) [123I] N-ω-fluoropropyl-2β-carbomethoxy-3β-(4-iodophenyl) nortropane single-photon emission computed tomography brain imaging in the diagnosis of dementia with Lewy bodies. Alzheimers Dement 8(1):74–83Google Scholar
  44. 44.
    Grosset DG, Tatsch K, Oertel WH et al (2014) Safety analysis of 10 clinical trials and for 13 years after first approval of ioflupane 123I injection (DaTscan). J Nucl Med 55(8):1281–1287Google Scholar
  45. 45.
    Walker Z, Moreno E, Thomas A et al (2015) Clinical usefulness of dopamine transporter SPECT imaging with 123I-FP-CIT in patients with possible dementia with Lewy bodies: randomised study. Br J Psychiatry 206(2):145–152Google Scholar
  46. 46.
    Walker Z, Possin KL, Boeve BF (2015) Lewy body dementias. Lancet 386(10004):1683–1697Google Scholar
  47. 47.
    Walker Z, Moreno E, Thomas A et al (2016) Evolution of clinical features in possible DLB depending on FP-CIT SPECT result. Neurology 87(10):1045–1051Google Scholar
  48. 48.
    Thomas AJ, Attems J, Colloby SJ et al (2017) Autopsy validation of 123I-FP-CIT dopaminergic neuroimaging for the diagnosis of DLB. Neurology 88(3):276–283Google Scholar
  49. 49.
    Papathanasiou ND, Boutsiadis A, Dickson J, Bomanji JB (2012) Diagnostic accuracy of 123I-FP-CIT (DaTSCAN) in dementia with Lewy bodies: a meta-analysis of published studies. Parkinsonism Relat Disord 18(3):225–229Google Scholar
  50. 50.
    McCleery J, Morgan S, Bradley KM, Noel-Storr AH, Ansorge O, Hyde C (2015) Dopamine transporter imaging for the diagnosis of dementia with Lewy bodies. Cochrane Database Syst Rev 1:CD010633Google Scholar
  51. 51.
    Brigo F, Turri G, Tinazzi M (2015) 123I-FP-CIT SPECT in the differential diagnosis between dementia with Lewy bodies and other. J Neurol Sci 359(1–2):161–171Google Scholar
  52. 52.
    O’Brien JT, Colloby S, Fenwick J et al (2004) Dopamine transporter loss visualized with FP-CIT SPECT in the differential diagnosis of dementia with Lewy bodies. Arch Neurol 61(6):919–925Google Scholar
  53. 53.
    Morgan S, Kemp P, Booij J et al (2012) Differentiation of frontotemporal dementia from dementia with Lewy bodies using FP-CIT SPECT. J Neurol Neurosurg Psychiatry 83(11):1063–1070Google Scholar
  54. 54.
    Eshuis SA, Jager PL, Maguire RP, Jonkman S, Dierckx RA, Leenders KL (2009) Direct comparison of FP-CIT SPECT and F-DOPA PET in patients with Parkinson’s disease and healthy controls. Eur J Nucl Med Mol Imaging 36(3):454–462Google Scholar
  55. 55.
    Yoshita M, Taki J, Yokoyama K et al (2006) Value of 123I-MIBG radioactivity in the differential diagnosis of DLB from AD. Neurology 66(12):1850–1854Google Scholar
  56. 56.
    Treglia G, Cason E, Cortelli P et al (2014) Iodine-123 metaiodobenzylguanidine scintigraphy and iodine-123 ioflupane single photon emission computed tomography in Lewy body diseases: complementary or alternative techniques? J Neuroimaging 24(2):149–154Google Scholar
  57. 57.
    Braune S (2001) The role of cardiac metaiodobenzylguanidine uptake in the differential diagnosis of parkinsonian syndromes. Clin Auton Res 11(6):351–355Google Scholar
  58. 58.
    Treglia G, Cason E (2012) Diagnostic performance of myocardial innervation imaging using MIBG scintigraphy in differential diagnosis between dementia with Lewy bodies and other dementias: a systematic review and a meta-analysis. J Neuroimaging 22(2):111–117Google Scholar
  59. 59.
    King AE, Mintz J, Royall DR (2011) Meta-analysis of 123I-MIBG cardiac scintigraphy for the diagnosis of Lewy body-related disorders. Mov Disord 26(7):1218–1224Google Scholar
  60. 60.
    Braune S, Reinhardt M, Schnitzer R, Riedel A, Lücking CH (1999) Cardiac uptake of [123I]MIBG separates Parkinson’s disease from multiple system atrophy. Neurology 53(5):1020Google Scholar
  61. 61.
    Nuvoli S, Palumbo B, Malaspina S, Madeddu S, Spanu A (2018) 123I-ioflupane SPET and 123I-MIBG in the diagnosis of Parkinson’s disease and parkinsonian disorders and in the differential diagnosis between Alzheimer’s and Lewy’s bodies dementias. Hell J Nucl Med 21(1):60–68Google Scholar
  62. 62.
    Surendranathan A, O’Brien JT (2018) Clinical imaging in dementia with Lewy bodies. Evid Based Mental Health 21(2):61–65Google Scholar
  63. 63.
    Jellinger KA (2018) Dementia with Lewy bodies and Parkinson’s disease-dementia: current concepts and controversies. J Neural Transm 125:615–650Google Scholar
  64. 64.
    Tiraboschi P, Corso A, Guerra UP et al (2016) (123) I-2β-carbomethoxy-3β-(4-iodophenyl)-N-(3-fluoropropyl) nortropane single photon emission computed tomography and (123) I-metaiodobenzylguanidine myocardial scintigraphy in differentiating dementia with lewy bodies from other dementias: a comparative study. Ann Neurol 80(3):368–378Google Scholar
  65. 65.
    Thobois S, Prange S, Scheiber C, Broussolle E (2018) What a neurologist should know about PET and SPECT functional imaging for parkinsonism: a practical perspective. Parkinson Relat Disord S1353–8020(18):30375-4Google Scholar
  66. 66.
    Orimo S, Amino T, Itoh Y et al (2005) Cardiac sympathetic denervation precedes neuronal loss in the sympathetic ganglia in Lewy body disease. Acta Neuropathol 109(6):583–588Google Scholar
  67. 67.
    Sakakibara R, Tateno F, Kishi M, Tsuyusaki Y, Terada H, Inaoka T (2014) MIBG myocardial scintigraphy in pre-motor Parkinson’s disease: a review. Parkinsonism Relat Disord 20(3):267–273Google Scholar
  68. 68.
    Gabilondo I, Llorens V, Rodriguez T et al (2018) Myocardial MIBG scintigraphy in genetic Parkinson’s disease as a model for Lewy body disorders. EJNMMI. Google Scholar
  69. 69.
    Komatsu J, Samuraki M, Nakajima K et al (2018) 123I-MIBG myocardial scintigraphy for the diagnosis of DLB: a multicentre 3-year follow-up study. J Neurol Neurosurg Psychiatry 89(11):1167–1173Google Scholar
  70. 70.
    Suzuki M, Kurita A, Hashimoto M et al (2006) Impaired myocardial 123I-metaiodobenzylguanidine uptake in Lewy body disease: comparison between dementia with Lewy bodies and Parkinson’s disease. J Neurol Sci 240:15–19Google Scholar
  71. 71.
    Yoshita M, Arai H, Arai H et al (2015) Diagnostic accuracy of 123I-meta-iodoben-zylguanidine myocardial scintigraphy in dementia with Lewy bodies: a multicenter study. PLoS One 10(3):1–10Google Scholar
  72. 72.
    Timóteo da Rocha E, Alves WEFA, Verschure DO, Verberne HJ (2017) The use of cardiac 123I-mIBG scintigraphy in clinical practice: the necessity to standardize! Int J Cardiovasc Sci 30(6):533–541Google Scholar
  73. 73.
    Odagiri H, Baba T, Nishio Y et al (2016) On the utility of MIBG SPECT/CT in evaluating cardiac sympathetic dysfunction in Lewy body diseases. PloS One 7:1–10Google Scholar
  74. 74.
    Saeed U, Compagnone J, Aviv RI et al (2017) Imaging biomarkers in Parkinson’s disease and Parkinsonian syndromes: current and emerging concepts. Transl Neurodegen 6:8–33Google Scholar
  75. 75.
    Liu S, Wang Xiao-Dan, Wang Ying et al (2017) Clinical and neuroimaging characteristics of Chinese dementia with Lewy bodies. PLoS One 12(3):e0171802Google Scholar
  76. 76.
    Higuchi M, Tashiro M, Arai H, Okamura N, Hara S, Higuchi S, Itoh M, Shin RW, Trojanowski JQ, Sasaki H (2000) Glucose hypometabolism and neuropathological correlates in brains of dementia with Lewy bodies. Exp Neurol 162(2):247–256Google Scholar
  77. 77.
    Minoshima S, Foster NL, Sima AA, Frey KA, Albin RL, Kuhl DE (2001) Alzheimer’s disease versus dementia with Lewy bodies: cerebral metabolic distinction with autopsy confirmation. Ann Neurol 50(3):358–365Google Scholar
  78. 78.
    Lim SM, Katsifis A, Villemagne VL et al (2009) The 18F-FDG PET cingulate island sign and comparison to 123I-beta-CIT SPECT for diagnosis of dementia with Lewy bodies. J Nucl Med 50(10):1638–1645Google Scholar
  79. 79.
    Imamura T, Ishii K, Sasaki M et al (1997) Regional cerebral glucose metabolism in dementia with Lewy bodies and Alzheimer’s disease: a comparative study using positron emission tomography. Neurosci Lett 235(1–2):49–52Google Scholar
  80. 80.
    Yousaf T, Dervenoulas G, Valkimadi PE, Politis M (2018) Neuroimaging in Lewy Body dementia. J Neurol. Google Scholar
  81. 81.
    Graff-Radford J, Murray ME, Lowe VJ et al (2014) Dementia with Lewy bodies: basis of cingulate island sign. Neurology 83(9):801–809Google Scholar
  82. 82.
    Fiorenzato E, Biundo R, Cecchin D, Frigo AC, Kim J, Weis L, Strafella AP, Antonini A (2018) Brain amyloid contribution to cognitive dysfunction in early-stage Parkinson’s Disease: the PPMI dataset. J Alzheimers Dis 66(1):229–237Google Scholar
  83. 83.
    Whitwell JL, Whitwell JL, Graff-Radford J, Singh TD et al (2017) 18F-FDG PET in posterior cortical atrophy and dementia with lewy bodies. J Nucl Med 58(4):632–638Google Scholar
  84. 84.
    Saeed U, Compagnone J, Aviv RI, Strafella AP, Black SE, Lang AE, Masellis M (2017) Imaging biomarkers in Parkinson’s disease and Parkinsonian syndromes: current and emerging concepts. Transl Neurodegener 6:8Google Scholar
  85. 85.
    Frey KA, Petrou M (2015) Imaging amyloidopathy in parkinson disease and Parkinsonian dementia syndromes. Clin Transl Imaging 3(1):57–64Google Scholar
  86. 86.
    Gomperts SN (2014) Imaging the role of amyloid in PD dementia and dementia with Lewy bodies. Curr Neurol Neurosci Rep 14(8):472Google Scholar
  87. 87.
    Maetzler W, Liepelt I, Reimold M et al (2009) Cortical PIB binding in Lewy body disease is associated with Alzheimer-like characteristics. Neurobiol Dis 34(1):107–112Google Scholar
  88. 88.
    Gomperts SN, Rentz DM, Moran E et al (2008) Imaging amyloid deposition in Lewy body diseases. Neurology 71(12):903–910Google Scholar
  89. 89.
    Kantarci K, Lowe VJ, Boeve BF et al (2012) Multimodality imaging characteristics of dementia with Lewy bodies. Neurobiol Aging 33(9):2091–2105Google Scholar
  90. 90.
    Lee SH, Cho H, Choi JY, Lee JH, Ryu YH, Lee MS, Lyoo CH (2018) Distinct patterns of amyloid-dependent tau accumulation in Lewy body diseases. Mov Disord 33(2):262–272Google Scholar
  91. 91.
    Bohnen NI, Müller MLTM, Frey KA (2017) Molecular imaging and updated diagnostic criteria in Lewy body dementias. Curr Neurol Neurosci Rep 17(10):73Google Scholar
  92. 92.
    Kantarci K, Lowe VJ, Boeve BF et al (2017) AV-1451 tau and β-amyloid positron emission tomography imaging in dementia with Lewy bodies. Ann Neurol 81(1):58–67Google Scholar
  93. 93.
    Hansen AK, Damholdt MF, Fedorova TD et al (2017) In Vivo cortical tau in Parkinson’s disease using 18F-AV-1451 positron emission tomography. Mov Disord 32(6):922–927Google Scholar
  94. 94.
    Bauckneht M, Arnaldi S, Nobili F, Aarsland A, Morbelli S (2018) New tracers and new perspectives for molecular imaging in Lewy body disease. Curr Med Chem 25:3105–3130Google Scholar
  95. 95.
    Lockhart A, Davis B, Matthews JC et al (2003) The peripheral benzodiazepine receptor ligand PK11195 binds with high affinity to the acute phase reactant alpha1-acid glycoprotein: implication for the use of the ligand as a CNS inflammatory marker. Nucl Med Biol 30(2):199–206Google Scholar
  96. 96.
    Surendranathan A, Su L, Passamonti L et al (2017) [11C]PK11195 PET imaging reveals neuroinflammation in dementia with Lewy Body is negatively associated with disease severity: NIMROD study. Alzheimer Dement J 13(7):p64–p65Google Scholar
  97. 97.
    Surendranathan A, Rowe JB, O’Brine JT (2015) Neuroinflammation in Lewy Body dementia. Parkinsonism Relat Disord 21(12):1398–1406Google Scholar
  98. 98.
    International Classification of Sleep Disorders (2005) Diagnostic and coding manual, 2nd edn. American Academy of Sleep Medicine, WestchesterGoogle Scholar
  99. 99.
    Cromarty RA, Elder GJ, Graziadio S et al (2016) Neurophysiological biomarkers for Lewy body dementias. Clin Neurophysiol 127(1):349–359Google Scholar
  100. 100.
    Bonanni L, Perfetti B, Bifolchetti S et al (2015) Quantitative electroencephalogram utility in predicting conversion in mild cognitive impairment to dementia with Lewy bodies. Neurobiol Aging 36(1):434–445Google Scholar
  101. 101.
    Filippi M, Agosta F, Barkhof F et al (2012) EFNS task force: the use of neuroimaging in the diagnosis of dementia. Eur J Neurol 19(12):e131–e140Google Scholar
  102. 102.
    Oppedal K, Ferreira D, Cavallin L et al (2018) A signature pattern of cortical atrophy in dementia with Lewy bodies: a study on 333 patients from the European DLB consortium. Alzheimers Dement 15:1–10Google Scholar
  103. 103.
    Burton EJ, Barber R, Mukaetova-Ladinska EB, Robson J, Perry RH, Jaros E, Kalaria RN, O’Brien JT (2009) Medial temporal lobe atrophy on MRI differentiates Alzheimer’s disease from dementia with Lewy bodies and vascular cognitive impairment: a prospective study with pathological verification of diagnosis. Brain 132(Pt 1):195–203Google Scholar
  104. 104.
    Harper L, Fumagalli GG, Barkhof F et al (2016) MRI visual rating scales in the diagnosis of dementia: evaluation in 184 post-mortem confirmed cases. Brain 139(4):1211–1225Google Scholar
  105. 105.
    Burton EJ, Mukaetova-Ladinska EB, Perry RH, Jaros E, Barber R, O’Brien JT (2012) Neuropathological correlates of volumetric MRI in autopsy-confirmed Lewy body dementia. Neurobiol Aging 33(7):1228–1236Google Scholar
  106. 106.
    Nedelska Z, Ferman TJ, Boeve BF et al (2015) Pattern of brain atrophy rates in autopsy-confirmed dementia with Lewy bodies. Neurobiol Aging 36(1):452–461Google Scholar
  107. 107.
    Abdelnour C, van Steenoven I, Londos E et al (2016) Alzheimer’s disease cerebrospinal fluid biomarkers predict cognitive decline in lewy body dementia. Mov Disord 31(8):1203–1208Google Scholar
  108. 108.
    Mollenhauer B, Cullen V, Kahn I et al (2008) Direct quantification of CSF alpha-synuclein by ELISA and first cross-sectional study in patients with neurodegeneration. Exp Neurol 213(2):315–325Google Scholar
  109. 109.
    Oskar Hansson O, Hall S, Öhrfelt A et al (2014) Levels of cerebrospinal fluid α-synuclein oligomers are increased in Parkinson’s disease with dementia and dementia with Lewy bodies compared to Alzheimer’s disease. Alzheimer’s Res Ther 6:25Google Scholar
  110. 110.
    Donadio V, Incensi A, Rizzo G et al (2017) A new potential biomarker for dementia with Lewy bodies: skin nerve α-synuclein deposits. Neurology 89(4):318–326Google Scholar
  111. 111.
    Guerreiro R, Ross OA, Kun-Rodrigues C et al (2018) Investigating the genetic architecture of dementia with Lewy bodies: a two-stage genome-wide association study. Lancet Neurol 17(1):64–74Google Scholar
  112. 112.
    Slaets S, Van Acker F, Versijpt J et al (2015) Diagnostic value of MIBG cardiac scintigraphy for differential dementia diagnosis. Int J Geriatr Psychiatry 30:864–869Google Scholar
  113. 113.
    Jacobson AF, Travin MI (2015) Impact of medications on mIBG uptake, with specific attention to the heart: comprehensive review of the literature. J Nucl Cardiol 22(5):980–993Google Scholar
  114. 114.
    Del Sole A, Perini G, Lecchi M et al (2015) Correlation between 123I-FP-CIT brain SPECT and parkinsonism in dementia with Lewy bodies: caveat for clinical use. Clin Nucl Med 40:32–35Google Scholar
  115. 115.
    Kobayashi S, Makino K, Hatakeyama S et al (2017) The usefulness of combined brain perfusion single-photon emission computed tomography, Dopamine-transporter single-photon emission computed tomography, and 123I-metaiodobenzylguanidine myocardial scintigraphy for the diagnosis of dementia with Lewy bodies. J Neurol 14:247–255Google Scholar
  116. 116.
    Nobili F, Arbizu J, Bouwman F et al (2018) European Association of Nuclear Medicine and European Academy of Neurology recommendations for the use of brain 18F-fluorodeoxyglucose positron emission tomography in neurodegenerative cognitive impairment and dementia: Delphi consensus. Eur J Neurol 25(10):1201–1217Google Scholar

Copyright information

© Italian Association of Nuclear Medicine and Molecular Imaging 2019

Authors and Affiliations

  • Stelvio Sestini
    • 1
    • 14
    Email author
  • Pierpaolo Alongi
    • 2
    • 14
  • Valentina Berti
    • 3
    • 14
  • Maria Lucia Calcagni
    • 4
    • 14
  • Diego Cecchin
    • 5
    • 14
    • 15
  • Agostino Chiaravalloti
    • 6
    • 14
  • Andrea Chincarini
    • 7
    • 14
  • Angelina Cistaro
    • 8
    • 14
  • Ugo Paolo Guerra
    • 9
    • 14
  • Sabina Pappatà
    • 10
    • 14
  • Pietro Tiraboschi
    • 11
    • 14
  • Flavio Nobili
    • 12
    • 13
    • 14
  1. 1.Nuclear Medicine UnitNuovo Ospedale di Prato (NOP) S. StefanoPratoItaly
  2. 2.Nuclear Medicine UnitSan Raffaele G. Giglio InstituteCefalùItaly
  3. 3.Nuclear Medicine Unit, Department of Biomedical, Experimental and Clinical SciencesUniversity of FlorenceFlorenceItaly
  4. 4.Department of Diagnostic Imaging, Radiation Oncology and Haematology, Institute of Nuclear MedicineFondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica DEL Sacro CuoreRomeItaly
  5. 5.Nuclear Medicine Unit, Department of Medicine-DIMEDPadova University HospitalPaduaItaly
  6. 6.Department of Biomedicine and PreventionUniversity Tor VergataRomeItaly
  7. 7.Genoa SectionNational Institute of Nuclear Physics (INFN)GenoaItaly
  8. 8.Positron Emission Tomography Centre, IRMET S.p.A., AffideaTurinItaly
  9. 9.Department of Nuclear MedicinePoliambulanza FoundationBresciaItaly
  10. 10.Institute of Biostructure and BioimagingNational Research CouncilNaplesItaly
  11. 11.Fondazione IRCCS Istituto Neurologico Carlo BestaMilanItaly
  12. 12.Department of Neuroscience (DINOGMI)University of GenoaGenoaItaly
  13. 13.IRCCS Ospedale Policlinico San MartinoGenoaItaly
  14. 14.IRCCS NeuromedPozzilliItaly
  15. 15.Padova Neuroscience CenterUniversity of PaduaPaduaItaly

Personalised recommendations