Advertisement

Clinical and Translational Imaging

, Volume 6, Issue 6, pp 441–447 | Cite as

The role of functional imaging in lung cancer

  • Rebecca Bütof
  • Esther G. C. TroostEmail author
Mini - Review
  • 98 Downloads
Part of the following topical collections:
  1. Lung

Abstract

Over the past decade, functional imaging by means of 18F-fluorodeoxyglucose positron emission tomography (FDG-PET/CT) has improved tumor staging and treatment planning leading to somewhat higher survival rates, in particular in NSCLC patients. This review focuses on the recent insight gained and at current challenges encountered while pursuing improved outcome in patients suffering from NSCLC or SCLC.

Keywords

Radiotherapy Positron emission tomography NSCLC SCLC Selective nodal irradiation 

Notes

Acknowledgements

This work was in part funded by German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany; and National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany, and Helmholtz Association / Helmholtz-Zentrum Dresden – Rossendorf (HZDR), Dresden, Germany.

Funding

None.

Compliance with ethical standards

Conflict of interest

The author(s) declare that they have no competing interests.

Ethical approval

This article does not contain any studies with human or animal subjects performed by any of the authors. Therefore, no ethical approval is required.

Informed consent

This article does not contain any studies with human or animal subjects performed by any of the authors. Therefore, no informed consent is required.

References

  1. 1.
    Fruh M, De Ruysscher D, Popat S, Crino L, Peters S, Felip E (2013) Small-cell lung cancer (SCLC): ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol 24(Suppl 6):vi99–vi105.  https://doi.org/10.1093/annonc/mdt178 CrossRefPubMedGoogle Scholar
  2. 2.
    Siegel RL, Miller KD, Jemal A (2016) Cancer statistics 2016. CA Cancer J Clin 66(1):7–30.  https://doi.org/10.3322/caac.21332 CrossRefGoogle Scholar
  3. 3.
    Cuffe S, Moua T, Summerfield R, Roberts H, Jett J, Shepherd FA (2011) Characteristics and outcomes of small cell lung cancer patients diagnosed during two lung cancer computed tomographic screening programs in heavy smokers. J Thorac Oncol 6(4):818–822.  https://doi.org/10.1097/JTO.0b013e31820c2f2e CrossRefPubMedGoogle Scholar
  4. 4.
    Jett JR, Schild SE, Kesler KA, Kalemkerian GP (2013) Treatment of small cell lung cancer: diagnosis and management of lung cancer: American college of chest physicians evidence-based clinical practice guidelines. Chest 143(5 Suppl):e400S–e419S.  https://doi.org/10.1378/chest.12-2363 CrossRefPubMedGoogle Scholar
  5. 5.
    Palma D, Visser O, Lagerwaard FJ, Belderbos J, Slotman B, Senan S (2011) Treatment of stage I NSCLC in elderly patients: a population-based matched-pair comparison of stereotactic radiotherapy versus surgery. Radiother Oncol 101(2):240–244.  https://doi.org/10.1016/j.radonc.2011.06.029 CrossRefPubMedGoogle Scholar
  6. 6.
    Auperin A, Le Pechoux C, Rolland E, Curran WJ, Furuse K, Fournel P, Belderbos J, Clamon G, Ulutin HC, Paulus R, Yamanaka T, Bozonnat MC, Uitterhoeve A, Wang X, Stewart L, Arriagada R, Burdett S, Pignon JP (2010) Meta-analysis of concomitant versus sequential radiochemotherapy in locally advanced non-small-cell lung cancer. J Clin Oncol 28(13):2181–2190.  https://doi.org/10.1200/JCO.2009.26.2543 CrossRefPubMedGoogle Scholar
  7. 7.
    Faivre-Finn C, Snee M, Ashcroft L, Appel W, Barlesi F, Bhatnagar A, Bezjak A, Cardenal F, Fournel P, Harden S, Le Pechoux C, McMenemin R, Mohammed N, O’Brien M, Pantarotto J, Surmont V, Van Meerbeeck JP, Woll PJ, Lorigan P, Blackhall F, Team CS (2017) Concurrent once-daily versus twice-daily chemoradiotherapy in patients with limited-stage small-cell lung cancer (CONVERT): an open-label, phase 3, randomised, superiority trial. Lancet Oncol 18(8):1116–1125.  https://doi.org/10.1016/S1470-2045(17)30318-2 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Turrisi AT 3rd, Kim K, Blum R, Sause WT, Livingston RB, Komaki R, Wagner H, Aisner S, Johnson DH (1999) Twice-daily compared with once-daily thoracic radiotherapy in limited small-cell lung cancer treated concurrently with cisplatin and etoposide. New Engl J Med 340(4):265–271.  https://doi.org/10.1056/nejm199901283400403 CrossRefPubMedGoogle Scholar
  9. 9.
    Carter BW, Glisson BS, Truong MT, Erasmus JJ (2014) Small cell lung carcinoma: staging, imaging, and treatment considerations. Radiographics 34(6):1707–1721.  https://doi.org/10.1148/rg.346140178 CrossRefPubMedGoogle Scholar
  10. 10.
    Grootjans W, de Geus-Oei LF, Troost EG, Visser EP, Oyen WJ, Bussink J (2015) PET in the management of locally advanced and metastatic NSCLC. Nat Rev Clin Oncol 12(7):395–407.  https://doi.org/10.1038/nrclinonc.2015.75 CrossRefPubMedGoogle Scholar
  11. 11.
    Saima R, Humayun B, Khalid NI (2017) Triage of limited versus extensive disease on (18)F-FDG PET/CT scan in small cell lung cancer. Asia Ocean J Nucl Med Biol 5(2):109–113.  https://doi.org/10.22038/aojnmb.2017.8751 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Mitchell MD, Aggarwal C, Tsou AY, Torigian DA, Treadwell JR (2016) Imaging for the pretreatment staging of small cell lung cancer: a systematic review. Acad Radiol 23(8):1047–1056.  https://doi.org/10.1016/j.acra.2016.03.017 CrossRefPubMedGoogle Scholar
  13. 13.
    Treadwell JR, Mitchell MD, Tsou A, Torigian D, Aggarwal C, Schoelles KM (2016) Imaging for the Pretreatment Staging of Small Cell Lung Cancer. Comparative Effectiveness Review No. 174. Agency for Healthcare Research and Quality, Rockville, MDGoogle Scholar
  14. 14.
    Gniazdowska E, Kozminski P, Bankowski K, Ochman P (2014) 99mTc-labeled vasopressin peptide as a radiopharmaceutical for small-cell lung cancer (SCLC) diagnosis. J Med Chem 57(14):5986–5994.  https://doi.org/10.1021/jm500272r CrossRefPubMedGoogle Scholar
  15. 15.
    De Ruysscher D, Nestle U, Jeraj R, Macmanus M (2012) PET scans in radiotherapy planning of lung cancer. Lung Cancer 75(2):141–145.  https://doi.org/10.1016/j.lungcan.2011.07.018 CrossRefPubMedGoogle Scholar
  16. 16.
    Pignon JP, Arriagada R, Ihde DC, Johnson DH, Perry MC, Souhami RL, Brodin O, Joss RA, Kies MS, Lebeau B et al (1992) A meta-analysis of thoracic radiotherapy for small-cell lung cancer. New Engl J Med 327(23):1618–1624.  https://doi.org/10.1056/nejm199212033272302 CrossRefPubMedGoogle Scholar
  17. 17.
    Steenbakkers RJ, Duppen JC, Fitton I, Deurloo KE, Zijp LJ, Comans EF, Uitterhoeve AL, Rodrigus PT, Kramer GW, Bussink J, De Jaeger K, Belderbos JS, Nowak PJ, van Herk M, Rasch CR (2006) Reduction of observer variation using matched CT-PET for lung cancer delineation: a three-dimensional analysis. Int J Radiat Oncol Biol Phys 64(2):435–448.  https://doi.org/10.1016/j.ijrobp.2005.06.034 CrossRefPubMedGoogle Scholar
  18. 18.
    van Baardwijk A, Bosmans G, Boersma L, Buijsen J, Wanders S, Hochstenbag M, van Suylen RJ, Dekker A, Dehing-Oberije C, Houben R, Bentzen SM, van Kroonenburgh M, Lambin P, De Ruysscher D (2007) PET-CT-based auto-contouring in non-small-cell lung cancer correlates with pathology and reduces interobserver variability in the delineation of the primary tumor and involved nodal volumes. Int J Radiat Oncol Biol Phys 68(3):771–778.  https://doi.org/10.1016/j.ijrobp.2006.12.067 CrossRefPubMedGoogle Scholar
  19. 19.
    Stroom J, Blaauwgeers H, van Baardwijk A, Boersma L, Lebesque J, Theuws J, van Suylen RJ, Klomp H, Liesker K, van Pel R, Siedschlag C, Gilhuijs K (2007) Feasibility of pathology-correlated lung imaging for accurate target definition of lung tumors. Int J Radiat Oncol Biol Phys 69(1):267–275.  https://doi.org/10.1016/j.ijrobp.2007.04.065 CrossRefPubMedGoogle Scholar
  20. 20.
    De Ruysscher D, Wanders S, van Haren E, Hochstenbag M, Geeraedts W, Utama I, Simons J, Dohmen J, Rhami A, Buell U, Thimister P, Snoep G, Boersma L, Verschueren T, van Baardwijk A, Minken A, Bentzen SM, Lambin P (2005) Selective mediastinal node irradiation based on FDG-PET scan data in patients with non-small-cell lung cancer: a prospective clinical study. Int J Radiat Oncol Biol Phys 62(4):988–994.  https://doi.org/10.1016/j.ijrobp.2004.12.019 CrossRefPubMedGoogle Scholar
  21. 21.
    Belderbos JS, Heemsbergen WD, De Jaeger K, Baas P, Lebesque JV (2006) Final results of a phase I/II dose escalation trial in non-small-cell lung cancer using three-dimensional conformal radiotherapy. Int J Radiat Oncol Biol Phys 66(1):126–134.  https://doi.org/10.1016/j.ijrobp.2006.04.034 (S0360-3016(06)00731-0 [pii]) CrossRefPubMedGoogle Scholar
  22. 22.
    Martinussen HM, Reymen B, Wanders R, Troost EG, Dingemans AC, Ollers M, Houben R, De Ruysscher D, Lambin P, van Baardwijk A (2016) Is selective nodal irradiation in non-small cell lung cancer still safe when using IMRT? Results of a prospective cohort study. Radiother Oncol 121(2):322–327.  https://doi.org/10.1016/j.radonc.2016.10.001 CrossRefPubMedGoogle Scholar
  23. 23.
    Senan S, Chapet O, Lagerwaard FJ, Ten Haken RK (2004) Defining target volumes for non-small cell lung carcinoma. Semin Radiat Oncol 14(4):308–314.  https://doi.org/10.1016/j.semradonc.2004.07.004 CrossRefPubMedGoogle Scholar
  24. 24.
    De Ruysscher D, Bremer RH, Koppe F, Wanders S, van Haren E, Hochstenbag M, Geeraedts W, Pitz C, Simons J, ten Velde G, Dohmen J, Snoep G, Boersma L, Verschueren T, van Baardwijk A, Dehing C, Pijls M, Minken A, Lambin P (2006) Omission of elective node irradiation on basis of CT-scans in patients with limited disease small cell lung cancer: a phase II trial. Radiother Oncol 80(3):307–312.  https://doi.org/10.1016/j.radonc.2006.07.029 CrossRefPubMedGoogle Scholar
  25. 25.
    Colaco R, Sheikh H, Lorigan P, Blackhall F, Hulse P, Califano R, Ashcroft L, Taylor P, Thatcher N, Faivre-Finn C (2012) Omitting elective nodal irradiation during thoracic irradiation in limited-stage small cell lung cancer-evidence from a phase II trial. Lung Cancer 76(1):72–77.  https://doi.org/10.1016/j.lungcan.2011.09.015 CrossRefPubMedGoogle Scholar
  26. 26.
    Watkins JM, Wahlquist AE, Zauls AJ, Shirai K, Garrett-Mayer E, Aguero EG, Silvestri GA, Sherman CA, Sharma AK (2010) Involved-field radiotherapy with concurrent chemotherapy for limited-stage small-cell lung cancer: disease control, patterns of failure and survival. J Med Imaging Radiat Oncol 54(5):483–489.  https://doi.org/10.1111/j.1754-9485.2010.02201.x CrossRefPubMedGoogle Scholar
  27. 27.
    van Loon J, De Ruysscher D, Wanders R, Boersma L, Simons J, Oellers M, Dingemans AM, Hochstenbag M, Bootsma G, Geraedts W, Pitz C, Teule J, Rhami A, Thimister W, Snoep G, Dehing-Oberije C, Lambin P (2010) Selective nodal irradiation on basis of (18)FDG-PET scans in limited-disease small-cell lung cancer: a prospective study. Int J Radiat Oncol Biol Phys 77(2):329–336.  https://doi.org/10.1016/j.ijrobp.2009.04.075 CrossRefPubMedGoogle Scholar
  28. 28.
    Shirvani SM, Komaki R, Heymach JV, Fossella FV, Chang JY (2012) Positron emission tomography/computed tomography-guided intensity-modulated radiotherapy for limited-stage small-cell lung cancer. Int J Radiat Oncol Biol Phys 82(1):e91–e97.  https://doi.org/10.1016/j.ijrobp.2010.12.072 CrossRefPubMedGoogle Scholar
  29. 29.
    Han D, Qin Q, Hao S, Huang W, Wei Y, Zhang Z, Wang Z, Li B (2014) Feasibility and efficacy of simultaneous integrated boost intensity-modulated radiation therapy in patients with limited-disease small cell lung cancer. Radiat Oncol 9:280.  https://doi.org/10.1186/s13014-014-0280-9 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Bütof R, Gumina C, Valentini C, Sommerer A, Appold S, Zips D, Löck S, Baumann M, Troost E (2017) Sites of recurrent disease and prognostic factors in SCLC patients treated with radiochemotherapy. Clin Transl Radiat Oncol 7:36–42CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Faivre-Finn C, Snee M, Ashcroft L, Appel W, Barlesi F, Bhatnagar A, Bezjak A, Cardenal F, Fournel P, Harden S, Le Pechoux C, McMenemin R, Mohammed N, O’Brien M, Pantarotto J, Surmont V, Van Meerbeeck JP, Woll PJ, Lorigan P, Blackhall F (2017) Concurrent once-daily versus twice-daily chemoradiotherapy in patients with limited-stage small-cell lung cancer (CONVERT): an open-label, phase 3, randomised, superiority trial. Lancet Oncol 18(8):1116–1125.  https://doi.org/10.1016/s1470-2045(17)30318-2 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Cremonesi M, Gilardi L, Ferrari ME, Piperno G, Travaini LL, Timmerman R, Botta F, Baroni G, Grana CM, Ronchi S, Ciardo D, Jereczek-Fossa BA, Garibaldi C, Orecchia R (2017) Role of interim (18)F-FDG-PET/CT for the early prediction of clinical outcomes of non-small cell lung cancer (NSCLC) during radiotherapy or chemo-radiotherapy. A systematic review. Eur J Nucl Med Mol Imaging 44(11):1915–1927.  https://doi.org/10.1007/s00259-017-3762-9 CrossRefPubMedGoogle Scholar
  33. 33.
    van Elmpt W, Ollers M, Dingemans AM, Lambin P, De Ruysscher D (2012) Response assessment using 18F-FDG PET early in the course of radiotherapy correlates with survival in advanced-stage non-small cell lung cancer. J Nucl Med 53(10):1514–1520.  https://doi.org/10.2967/jnumed.111.102566 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Usmanij EA, de Geus-Oei LF, Troost EG, Peters-Bax L, van der Heijden EH, Kaanders JH, Oyen WJ, Schuurbiers OC, Bussink J (2013) 18F-FDG PET early response evaluation of locally advanced non-small cell lung cancer treated with concomitant chemoradiotherapy. J Nucl Med 54(9):1528–1534.  https://doi.org/10.2967/jnumed.112.116921 CrossRefPubMedGoogle Scholar
  35. 35.
    Grootjans W, Usmanij EA, Oyen WJ, van der Heijden EH, Visser EP, Visvikis D, Hatt M, Bussink J, de Geus-Oei LF (2016) Performance of automatic image segmentation algorithms for calculating total lesion glycolysis for early response monitoring in non-small cell lung cancer patients during concomitant chemoradiotherapy. Radiother Oncol 119(3):473–479.  https://doi.org/10.1016/j.radonc.2016.04.039 CrossRefPubMedGoogle Scholar
  36. 36.
    Aerts HJ, van Baardwijk AA, Petit SF, Offermann C, Loon J, Houben R, Dingemans AM, Wanders R, Boersma L, Borger J, Bootsma G, Geraedts W, Pitz C, Simons J, Wouters BG, Oellers M, Lambin P, Bosmans G, Dekker AL, De Ruysscher D (2009) Identification of residual metabolic-active areas within individual NSCLC tumours using a pre-radiotherapy (18)Fluorodeoxyglucose-PET-CT scan. Radiother Oncol 91(3):386–392.  https://doi.org/10.1016/j.radonc.2009.03.006 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Aerts HJ, Bussink J, Oyen WJ, van Elmpt W, Folgering AM, Emans D, Velders M, Lambin P, De Ruysscher D (2012) Identification of residual metabolic-active areas within NSCLC tumours using a pre-radiotherapy FDG-PET-CT scan: a prospective validation. Lung Cancer 75(1):73–76.  https://doi.org/10.1016/j.lungcan.2011.06.003 CrossRefPubMedGoogle Scholar
  38. 38.
    van Elmpt W, De Ruysscher D, van der Salm A, Lakeman A, van der Stoep J, Emans D, Damen E, Öllers M, Sonke J-J, Belderbos J (2012) The PET-boost randomised phase II dose-escalation trial in non-small cell lung cancer. Radiother Oncol 104(1):67–71CrossRefPubMedGoogle Scholar
  39. 39.
    Go SI, Song HN, Kang JH, Kang MH, Kim MJ, Jung J, Chung SI, Choi BH, Hwang IG, Kim SH, Ling H, Lee GW (2014) The clinical impact of the sum of the maximum standardized uptake value on the pretreatment with F-FDG-PET/CT in small-cell lung cancer. Oncology 86(1):1–9.  https://doi.org/10.1159/000357136 CrossRefPubMedGoogle Scholar
  40. 40.
    Pandit N, Gonen M, Krug L, Larson SM (2003) Prognostic value of [18F]FDG-PET imaging in small cell lung cancer. Eur J Nucl Med Mol Imaging 30(1):78–84.  https://doi.org/10.1007/s00259-002-0937-8 CrossRefPubMedGoogle Scholar
  41. 41.
    Park SB, Choi JY, Moon SH, Yoo J, Kim H, Ahn YC, Ahn MJ, Park K, Kim BT (2014) Prognostic value of volumetric metabolic parameters measured by [18F]fluorodeoxyglucose-positron emission tomography/computed tomography in patients with small cell lung cancer. Cancer Imaging 14:2.  https://doi.org/10.1186/1470-7330-14-2 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Chong S, Lee KS (2007) Spectrum of findings and usefulness of integrated PET/CT in patients with known or suspected neuroendocrine tumors of the lung. Cancer Imaging 7:195–201.  https://doi.org/10.1102/1470-7330.2007.0028 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Kim SJ, Chang S (2015) Limited prognostic value of SUVmax measured by F-18 FDG PET/CT in newly diagnosed small cell lung cancer patients. Oncol Res Treat 38(11):577–585.  https://doi.org/10.1159/000441289 CrossRefPubMedGoogle Scholar
  44. 44.
    Nobashi T, Koyasu S, Nakamoto Y, Kubo T, Ishimori T, Kim YH, Yoshizawa A, Togashi K (2016) Prognostic value of fluorine-18 fludeoxyglucose positron emission tomography parameters differs according to primary tumour location in small-cell lung cancer. Br J Radiol 89(1059):20150618.  https://doi.org/10.1259/bjr.20150618 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Lee J, Kim JO, Jung CK, Kim YS, Yoo Ie R, Choi WH, Jeon EK, Hong SH, Chun SH, Kim SJ, Kim YK, Kang JH (2014) Metabolic activity on [18f]-fluorodeoxyglucose-positron emission tomography/computed tomography and glucose transporter-1 expression might predict clinical outcomes in patients with limited disease small-cell lung cancer who receive concurrent chemoradiation. Clin Lung Cancer 15(2):e13–e21.  https://doi.org/10.1016/j.cllc.2013.09.005 CrossRefPubMedGoogle Scholar
  46. 46.
    Yu X, Zhu Y, Wang J, Song X, Zhu L, Men X, Li X, Dai D, Xu W (2017) Pretreatment metabolic parameters measured by 18F-FDG-PET to predict the outcome of first-line chemotherapy in extensive-stage small-cell lung cancer. Nucl Med Commun 38(2):193–200.  https://doi.org/10.1097/mnm.0000000000000637 CrossRefPubMedGoogle Scholar
  47. 47.
    van Loon J, Offermann C, Ollers M, van Elmpt W, Vegt E, Rahmy A, Dingemans AM, Lambin P, De Ruysscher D (2011) Early CT and FDG-metabolic tumour volume changes show a significant correlation with survival in stage I–III small cell lung cancer: a hypothesis generating study. Radiother Oncol 99(2):172–175.  https://doi.org/10.1016/j.radonc.2011.03.014 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Aerts HJ, Velazquez ER, Leijenaar RT, Parmar C, Grossmann P, Cavalho S, Bussink J, Monshouwer R, Haibe-Kains B, Rietveld D, Hoebers F, Rietbergen MM, Leemans CR, Dekker A, Quackenbush J, Gillies RJ, Lambin P (2014) Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun 5:4006.  https://doi.org/10.1038/ncomms5006 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Carvalho S, Leijenaar RT, Velazquez ER, Oberije C, Parmar C, van Elmpt W, Reymen B, Troost EG, Oellers M, Dekker A, Gillies R, Aerts HJ, Lambin P (2013) Prognostic value of metabolic metrics extracted from baseline positron emission tomography images in non-small cell lung cancer. Acta Oncol 52(7):1398–1404.  https://doi.org/10.3109/0284186X.2013.812795 CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    de Jong EE, van Elmpt W, Leijenaar RT, Hoekstra OS, Groen HJ, Smit EF, Boellaard R, van der Noort V, Troost EG, Lambin P, Dingemans AC (2017) [18F]FDG PET/CT-based response assessment of stage IV non-small cell lung cancer treated with paclitaxel-carboplatin-bevacizumab with or without nitroglycerin patches. Eur J Nucl Med Mol Imaging 44(1):8–16.  https://doi.org/10.1007/s00259-016-3498-y CrossRefPubMedGoogle Scholar
  51. 51.
    Lee G, Lee HY, Park H, Schiebler ML, van Beek EJR, Ohno Y, Seo JB, Leung A (2017) Radiomics and its emerging role in lung cancer research, imaging biomarkers and clinical management: state of the art. Eur J Radiol 86:297–307.  https://doi.org/10.1016/j.ejrad.2016.09.005 CrossRefPubMedGoogle Scholar
  52. 52.
    Zegers CM, van Elmpt W, Reymen B, Even AJ, Troost EG, Ollers MC, Hoebers FJ, Houben RM, Eriksson J, Windhorst AD, Mottaghy FM, De Ruysscher D, Lambin P (2014) In vivo quantification of hypoxic and metabolic status of NSCLC tumors using [18F] HX4 and [18F] FDG-PET/CT imaging. Clin Cancer Res 20(24):6389–6397.  https://doi.org/10.1158/1078-0432.CCR-14-1524 CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Everitt S, Ball D, Hicks RJ, Callahan J, Plumridge N, Trinh J, Herschtal A, Kron T, Mac Manus M (2017) Prospective study of serial imaging comparing fluorodeoxyglucose positron emission tomography (PET) and fluorothymidine PET during radical chemoradiation for non-small cell lung cancer: reduction of detectable proliferation associated with worse survival. Int J Radiat Oncol Biol Phys 99(4):947–955.  https://doi.org/10.1016/j.ijrobp.2017.07.035 CrossRefPubMedGoogle Scholar
  54. 54.
    Troost EG, Bussink J, Hoffmann AL, Boerman OC, Oyen WJ, Kaanders JH (2010) 18F-FLT PET/CT for early response monitoring and dose escalation in oropharyngeal tumors. J Nucl Med 51(6):866–874.  https://doi.org/10.2967/jnumed.109.069310 (jnumed.109.069310 [pii]) CrossRefPubMedGoogle Scholar
  55. 55.
    Hoeben BA, Troost EG, Span PN, van Herpen CM, Bussink J, Oyen WJ, Kaanders JH (2013) 18F-FLT PET during radiotherapy or chemoradiotherapy in head and neck squamous cell carcinoma is an early predictor of outcome. J Nucl Med 54(4):532–540.  https://doi.org/10.2967/jnumed.112.105999 CrossRefPubMedGoogle Scholar
  56. 56.
    Peerlings J, Troost EGC, Nelemans PJ, Lambin P, Beets-Tan RG, Hoffmann AL (2016) Meta-analysis on the use of MRI for nodal staging in non-small cell lung cancer. Radiology 281(1):151631CrossRefGoogle Scholar

Copyright information

© Italian Association of Nuclear Medicine and Molecular Imaging 2018

Authors and Affiliations

  1. 1.OncoRay—National Center for Radiation Research in OncologyDresdenGermany
  2. 2.Department of Radiotherapy and Radiation OncologyUniversity Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität DresdenDresdenGermany
  3. 3.Institute of Radiooncology—OncoRayHelmholtz-Zentrum Dresden—RossendorfDresdenGermany

Personalised recommendations