Clinical and Translational Imaging

, Volume 6, Issue 6, pp 471–482 | Cite as

Tau PET imaging evidence in patients with cognitive impairment: preparing for clinical use

  • Camille Noirot
  • Ismini Mainta
  • Aline Mendes
  • Paulina Andryszak
  • Hishayine Visvaratnam
  • Paul G. Unschuld
  • Giovanni B. Frisoni
  • Valentina GaribottoEmail author
Expert Review
Part of the following topical collections:
  1. Neuroimaging



The development and validation of molecular imaging markers for the neuropathological hallmarks of neurodegenerative diseases associated with cognitive impairment is a reality since two decades. Amyloid PET tracers have been validated analytically and are currently tested for their clinical utility. More recently tracers targeting specifically tau deposits have been developed and are currently tested in large clinical studies. The availability of these markers opens the possibility for precision medicine in a field that was limited by a gold standard diagnosis occurring only postmortem. Aim of this review is to summarize the main findings obtained using tau-specific PET tracers in clinical cohorts of patients with cognitive impairment.

Methods and Results

We report the results of a systematic literature review. Various approaches for automated image assessment have been tested, while visual rating strategies have not been validated yet. In the AD spectrum an increase in cortical binding has been consistently observed, with a topography correlated with the profile of cognitive impairment and in agreement with the knowledge on tau pathology from neuropathological series. The evidence in non-AD diseases is more limited, with discordant findings in different cohorts and with different tracers.


Post-mortem validations of in vivo data in large cohorts and studies investigating the clinical added value of this biomarker in comparison with others will be required before routine clinical use of this new modality.


Tau Positron emission tomography (PET) Alzheimer’s disease (AD) Biomarker Tauopathy 



This work was supported by the Swiss National Foundation with the grant SNF Grant 320030_169876, by the Velux Foundation (project no. 1123), by the Segre Foundation, and by the CoSTREAM project, funded from the European Union Horizon 2020 research and innovation programme under Grant agreement number 667375.

Author contributions

CN: literature search, image acquisition, and manuscript writing; IM: manuscript writing and editing, literature review, and preparation of figures; AM, HV, PA, PU, GF: manuscript writing and editing, and literature review; VG: content planning, literature review, and manuscript writing and editing.

Compliance with ethical standards

Ethical approval

All procedures performed in studies involving human participants were in accordance with the 1964 Helsinki Declaration and its later amendments and with the ethical standards of institutional and national research authorities.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Conflict of interest

All authors report no potential conflicts of interest.


  1. 1.
    Alzheimer A et al (1995) An English translation of Alzheimer’s 1907 paper, “Uber eine eigenartige Erkankung der Hirnrinde”. Clin Anat 8(6):429–431CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82(4):239–259CrossRefGoogle Scholar
  3. 3.
    Jack CR Jr et al (2016) A/T/N: an unbiased descriptive classification scheme for Alzheimer disease biomarkers. Neurology 87(5):539–547CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Jack CR et al. (2018) NIA-AA research framework: toward a biological definition of Alzheimer's disease. Alzheimers Dement 14(4):535–562. CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Frisoni GB et al (2017) Strategic roadmap for an early diagnosis of Alzheimer’s disease based on biomarkers. Lancet Neurol 16(8):661–676CrossRefGoogle Scholar
  6. 6.
    Garibotto V et al (2017) Clinical validity of brain fluorodeoxyglucose positron emission tomography as a biomarker for Alzheimer’s disease in the context of a structured 5-phase development framework. Neurobiol Aging 52:183–195CrossRefGoogle Scholar
  7. 7.
    Chiotis K et al (2017) Clinical validity of increased cortical uptake of amyloid ligands on PET as a biomarker for Alzheimer’s disease in the context of a structured 5-phase development framework. Neurobiol Aging 52:214–227CrossRefGoogle Scholar
  8. 8.
    Villemagne VL, Okamura N (2014) In vivo tau imaging: obstacles and progress. Alzheimers Dement 10(3 Suppl):S254–S264CrossRefGoogle Scholar
  9. 9.
    Wooten DW et al (2017) Pharmacokinetic evaluation of the tau PET radiotracer (18)F-T807 ((18)F-AV-1451) in human subjects. J Nucl Med 58(3):484–491CrossRefGoogle Scholar
  10. 10.
    Harada R et al (2016) Characteristics of tau and its ligands in PET imaging. Biomolecules 6(1):7CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    James OG, Doraiswamy PM, Borges-Neto S (2015) PET imaging of tau pathology in Alzheimer’s disease and tauopathies. Front Neurol 6:38CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Shah M, Catafau AM (2014) Molecular imaging insights into neurodegeneration: focus on tau PET radiotracers. J Nucl Med 55(6):871–874CrossRefGoogle Scholar
  13. 13.
    Shin J et al (2011) The merits of FDDNP-PET imaging in Alzheimer’s disease. J Alzheimers Dis 26(Suppl 3):135–145CrossRefGoogle Scholar
  14. 14.
    Betthauser TJ et al (2017) In vivo comparison of tau radioligands (18)F-THK-5351 and (18)F-THK-5317. J Nucl Med 58(6):996–1002CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Saint-Aubert L et al (2017) Tau PET imaging: present and future directions. Mol Neurodegener 12(1):19CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Harada R et al (2018) Correlations of (18)F-THK5351 PET with postmortem burden of tau and astrogliosis in Alzheimer disease. J Nucl Med 59(4):671–674CrossRefGoogle Scholar
  17. 17.
    Jovalekic A, Koglin N, Mueller A et al (2017) New protein deposition tracers in the pipeline. EJNMMI Radiopharm Chem 1(1):11CrossRefGoogle Scholar
  18. 18.
    Kimura Y et al (2015) PET quantification of tau pathology in human brain with 11C-PBB3. J Nucl Med 56(9):1359–1365CrossRefGoogle Scholar
  19. 19.
    Maruyama M et al (2013) Imaging of tau pathology in a tauopathy mouse model and in Alzheimer patients compared to normal controls. Neuron 79(6):1094–1108CrossRefGoogle Scholar
  20. 20.
    Chiotis K et al (2018) Dual tracer tau PET imaging reveals different molecular targets for (11)C-THK5351 and (11)C-PBB3 in the Alzheimer brain. Eur J Nucl Med Mol Imaging 45(9):1605–1617CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Lemoine L et al (2017) Comparative binding properties of the tau PET tracers THK5117, THK5351, PBB3, and T807 in postmortem Alzheimer brains. Alzheimers Res Ther 9(1):96CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Wong DF et al (2018) First in-human PET study of 3 novel tau radiopharmaceuticals: [(11)C]RO6924963, [(11)C]RO6931643, and [(18)F]RO6958948. J Nucl Med. CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Shidahara M et al (2017) A comparison of five partial volume correction methods for tau and amyloid PET imaging with [(18)F]THK5351 and [(11)C]PIB. Ann Nucl Med 31(7):563–569CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Mishra S et al (2017) AV-1451 PET imaging of tau pathology in preclinical Alzheimer disease: defining a summary measure. Neuroimage 161:171–178CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Schwarz AJ et al (2016) Regional profiles of the candidate tau PET ligand 18F-AV-1451 recapitulate key features of Braak histopathological stages. Brain 139(Pt 5):1539–1550CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Scholl M et al (2016) PET imaging of tau deposition in the aging human brain. Neuron 89(5):971–982CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Maass A et al (2017) Comparison of multiple tau-PET measures as biomarkers in aging and Alzheimer’s disease. Neuroimage 157:448–463CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Schwarz AJ et al (2018) Topographic staging of tau positron emission tomography images. Alzheimers Dement (Amst) 10:221–231Google Scholar
  29. 29.
    Johnson KA et al (2016) Tau positron emission tomographic imaging in aging and early Alzheimer disease. Ann Neurol 79(1):110–119CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Cho H et al (2016) Tau PET in Alzheimer disease and mild cognitive impairment. Neurology 87(4):375–383CrossRefGoogle Scholar
  31. 31.
    Okamura N et al (2014) Non-invasive assessment of Alzheimer’s disease neurofibrillary pathology using 18F-THK5105 PET. Brain 137(Pt 6):1762–1771CrossRefGoogle Scholar
  32. 32.
    Lowe VJ et al (2018) Widespread brain tau and its association with ageing, Braak stage and Alzheimer’s dementia. Brain 141(1):271–287CrossRefGoogle Scholar
  33. 33.
    Whitwell JL et al (2018) [(18) F]AV-1451 clustering of entorhinal and cortical uptake in Alzheimer’s disease. Ann Neurol 83(2):248–257CrossRefGoogle Scholar
  34. 34.
    Villemagne VL et al (2014) In vivo evaluation of a novel tau imaging tracer for Alzheimer’s disease. Eur J Nucl Med Mol Imaging 41(5):816–826CrossRefGoogle Scholar
  35. 35.
    Chiotis K et al (2016) Imaging in vivo tau pathology in Alzheimer’s disease with THK5317 PET in a multimodal paradigm. Eur J Nucl Med Mol Imaging 43(9):1686–1699CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Cho H et al (2016) In vivo cortical spreading pattern of tau and amyloid in the Alzheimer disease spectrum. Ann Neurol 80(2):247–258CrossRefGoogle Scholar
  37. 37.
    Kang JM et al (2017) Tau positron emission tomography using [(18)F]THK5351 and cerebral glucose hypometabolism in Alzheimer’s disease. Neurobiol Aging 59:210–219CrossRefGoogle Scholar
  38. 38.
    Jones DT et al (2017) Tau, amyloid, and cascading network failure across the Alzheimer’s disease spectrum. Cortex 97:143–159CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Pontecorvo MJ et al (2017) Relationships between flortaucipir PET tau binding and amyloid burden, clinical diagnosis, age and cognition. Brain 140(3):748–763PubMedPubMedCentralGoogle Scholar
  40. 40.
    Ossenkoppele R et al (2016) Tau PET patterns mirror clinical and neuroanatomical variability in Alzheimer’s disease. Brain 139(Pt 5):1551–1567CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Bejanin A et al (2017) Tau pathology and neurodegeneration contribute to cognitive impairment in Alzheimer’s disease. Brain 140(12):3286–3300CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Nasrallah IM et al (2018) (18)F-Flortaucipir PET/MRI correlations in nonamnestic and amnestic variants of Alzheimer disease. J Nucl Med 59(2):299–306CrossRefGoogle Scholar
  43. 43.
    Xia C et al (2017) Association of in vivo [18F]AV-1451 tau pet imaging results with cortical atrophy and symptoms in typical and atypical Alzheimer disease. JAMA Neurol 74(4):427–436CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Cho H et al (2017) Excessive tau accumulation in the parieto-occipital cortex characterizes early-onset Alzheimer’s disease. Neurobiol Aging 53:103–111CrossRefGoogle Scholar
  45. 45.
    Scholl M et al (2017) Distinct 18F-AV-1451 tau PET retention patterns in early- and late-onset Alzheimer’s disease. Brain 140(9):2286–2294CrossRefGoogle Scholar
  46. 46.
    Koychev I et al (2017) PET tau and amyloid-beta burden in Mild Alzheimer’s disease: divergent relationship with age, cognition, and cerebrospinal fluid biomarkers. J Alzheimers Dis 60(1):283–293CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Hoenig MC et al (2017) Tau pathology and cognitive reserve in Alzheimer’s disease. Neurobiol Aging 57:1–7CrossRefGoogle Scholar
  48. 48.
    Trombella S, Frisoni GB, Garibotto V (2017) The impact of education on the association between tau deposits and cognition in Mild Cognitive Impairment. Eur J Nucl Med Mol Imaging 44(Suppl2):S250 (abstract)Google Scholar
  49. 49.
    Shimada H et al (2017) Association between Abeta and tau accumulations and their influence on clinical features in aging and Alzheimer’s disease spectrum brains: a [(11)C]PBB3-PET study. Alzheimers Dement (Amst) 6:11–20Google Scholar
  50. 50.
    Kim HJ et al (2018) Assessment of extent and role of tau in subcortical vascular cognitive impairment using 18F-AV1451 positron emission tomography imaging. JAMA Neurol 75(8):999–1007CrossRefGoogle Scholar
  51. 51.
    McKeith IG et al (2017) Diagnosis and management of dementia with Lewy bodies: fourth consensus report of the DLB consortium. Neurology 89(1):88–100CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Ballard C et al (2006) Differences in neuropathologic characteristics across the Lewy body dementia spectrum. Neurology 67(11):1931–1934CrossRefGoogle Scholar
  53. 53.
    Kantarci K et al (2017) AV-1451 tau and beta-amyloid positron emission tomography imaging in dementia with Lewy bodies. Ann Neurol 81(1):58–67CrossRefGoogle Scholar
  54. 54.
    Gomperts SN et al (2016) Tau positron emission tomographic imaging in the Lewy Body diseases. JAMA Neurol 73(11):1334–1341CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Lee SH et al (2018) Distinct patterns of amyloid-dependent tau accumulation in Lewy body diseases. Mov Disord 33(2):262–272CrossRefGoogle Scholar
  56. 56.
    Hansen AK et al (2017) In vivo cortical tau in Parkinson’s disease using 18F-AV-1451 positron emission tomography. Mov Disord 32(6):922–927CrossRefGoogle Scholar
  57. 57.
    Winer JR et al (2018) Associations between tau, beta-amyloid, and cognition in Parkinson Disease. JAMA Neurol 75(2):227–235CrossRefGoogle Scholar
  58. 58.
    Hansen AK et al (2016) In vivo imaging of neuromelanin in Parkinson’s disease using 18F-AV-1451 PET. Brain 139(Pt 7):2039–2049CrossRefGoogle Scholar
  59. 59.
    Cho H et al (2018) Predominant subcortical accumulation of (18)F-flortaucipir binding in behavioral variant frontotemporal dementia. Neurobiol Aging 66:112–121CrossRefGoogle Scholar
  60. 60.
    Jang YK et al (2018) Head to head comparison of [(18)F] AV-1451 and [(18)F] THK5351 for tau imaging in Alzheimer’s disease and frontotemporal dementia. Eur J Nucl Med Mol Imaging 45(3):432–442CrossRefGoogle Scholar
  61. 61.
    Josephs KA et al (2018) [(18) F]AV-1451 tau-PET and primary progressive aphasia. Ann Neurol 83(3):599–611CrossRefGoogle Scholar
  62. 62.
    Bevan-Jones WR et al (2017) [(18)F]AV-1451 binding in vivo mirrors the expected distribution of TDP-43 pathology in the semantic variant of primary progressive aphasia. J Neurol Neurosurg Psychiatry 1–6Google Scholar
  63. 63.
    Makaretz SJ et al (2017) Flortaucipir tau PET imaging in semantic variant primary progressive aphasia. J Neurol Neurosurg Psychiatry 1–8Google Scholar
  64. 64.
    Feany MB, Dickson DW (1996) Neurodegenerative disorders with extensive tau pathology: a comparative study and review. Ann Neurol 40(2):139–148CrossRefGoogle Scholar
  65. 65.
    Hoglinger GU et al (2017) Clinical diagnosis of progressive supranuclear palsy: the movement disorder society criteria. Mov Disord 32(6):853–864CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Cho H et al (2017) Subcortical (18) F-AV-1451 binding patterns in progressive supranuclear palsy. Mov Disord 32(1):134–140CrossRefGoogle Scholar
  67. 67.
    Passamonti L et al (2017) 18F-AV-1451 positron emission tomography in Alzheimer’s disease and progressive supranuclear palsy. Brain 140(3):781–791PubMedPubMedCentralGoogle Scholar
  68. 68.
    Whitwell JL et al (2017) [(18) F]AV-1451 tau positron emission tomography in progressive supranuclear palsy. Mov Disord 32(1):124–133CrossRefGoogle Scholar
  69. 69.
    Smith R et al (2017) Increased basal ganglia binding of (18) F-AV-1451 in patients with progressive supranuclear palsy. Mov Disord 32(1):108–114CrossRefGoogle Scholar
  70. 70.
    Schonhaut DR et al (2017) (18) F-flortaucipir tau positron emission tomography distinguishes established progressive supranuclear palsy from controls and Parkinson disease: a multicenter study. Ann Neurol 82(4):622–634CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Perez-Soriano A et al (2017) PBB3 imaging in Parkinsonian disorders: evidence for binding to tau and other proteins. Mov Disord 32(7):1016–1024CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Brendel M et al (2017) [(18)F]-THK5351 PET correlates with topology and symptom severity in progressive supranuclear palsy. Front Aging Neurosci 9:440CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Whitwell JL et al (2018) Pittsburgh Compound B and AV-1451 positron emission tomography assessment of molecular pathologies of Alzheimer’s disease in progressive supranuclear palsy. Parkinsonism Relat Disord 48:3–9CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Ling H et al (2010) Does corticobasal degeneration exist? A clinicopathological re-evaluation. Brain 133(Pt 7):2045–2057CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Armstrong MJ et al (2013) Criteria for the diagnosis of corticobasal degeneration. Neurology 80(5):496–503CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Ali F et al (2018) [(18)F] AV-1451 uptake in corticobasal syndrome: the influence of beta-amyloid and clinical presentation. J Neurol 265(5):1079–1088CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Cho H et al (2017) (18)F-AV-1451 binds to motor-related subcortical gray and white matter in corticobasal syndrome. Neurology 89(11):1170–1178CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Smith R et al (2017) In vivo retention of (18)F-AV-1451 in corticobasal syndrome. Neurology 89(8):845–853CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Kikuchi A et al (2016) In vivo visualization of tau deposits in corticobasal syndrome by 18F-THK5351 PET. Neurology 87(22):2309–2316CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Utianski RL et al (2018) Tau-PET imaging with [18F]AV-1451 in primary progressive apraxia of speech. Cortex 99:358–374CrossRefGoogle Scholar
  81. 81.
    Ishiki A et al (2015) Longitudinal assessment of tau pathology in patients with Alzheimer’s disease using [18F]THK-5117 positron emission tomography. PLoS One 10(10):e0140311CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Chiotis K et al (2017) Longitudinal changes of tau PET imaging in relation to hypometabolism in prodromal and Alzheimer’s disease dementia. Mol Psychiatry. CrossRefGoogle Scholar
  83. 83.
    Jack CR Jr et al (2018) Longitudinal tau PET in ageing and Alzheimer’s disease. Brain 141(5):1517–1528CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Marquie M et al (2015) Validating novel tau positron emission tomography tracer [F-18]-AV-1451 (T807) on postmortem brain tissue. Ann Neurol 78(5):787–800CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Marquie M et al (2017) [F-18]-AV-1451 binding correlates with postmortem neurofibrillary tangle Braak staging. Acta Neuropathol 134(4):619–628CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Lemoine L et al (2018) Tau positron emission tomography imaging in tauopathies: the added hurdle of off-target binding. Alzheimers Dement (Amst) 10:232–236Google Scholar
  87. 87.
    Smith R et al (2016) 18F-AV-1451 tau PET imaging correlates strongly with tau neuropathology in MAPT mutation carriers. Brain 139(Pt 9):2372–2379CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Jones DT et al (2018) In vivo (18)F-AV-1451 tau PET signal in MAPT mutation carriers varies by expected tau isoforms. Neurology 90(11):e947–e954CrossRefGoogle Scholar
  89. 89.
    Josephs KA et al (2016) [18F]AV-1451 tau-PET uptake does correlate with quantitatively measured 4R-tau burden in autopsy-confirmed corticobasal degeneration. Acta Neuropathol 132(6):931–933CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    McMillan CT et al (2016) Multimodal evaluation demonstrates in vivo (18)F-AV-1451 uptake in autopsy-confirmed corticobasal degeneration. Acta Neuropathol 132(6):935–937CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Marquie M et al (2017) Lessons learned about [F-18]-AV-1451 off-target binding from an autopsy-confirmed Parkinson’s case. Acta Neuropathol Commun 5(1):75CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Marquie M et al (2017) Pathological correlations of [F-18]-AV-1451 imaging in non-alzheimer tauopathies. Ann Neurol 81(1):117–128CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Chhatwal JP et al (2016) Temporal T807 binding correlates with CSF tau and phospho-tau in normal elderly. Neurology 87(9):920–926CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Gordon BA et al (2016) The relationship between cerebrospinal fluid markers of Alzheimer pathology and positron emission tomography tau imaging. Brain 139(Pt 8):2249–2260CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Brier MR et al (2016) Tau and Abeta imaging, CSF measures, and cognition in Alzheimer’s disease. Sci Transl Med 8(338):338ra66Google Scholar
  96. 96.
    Mielke MM et al (2018) Plasma phospho-tau181 increases with Alzheimer’s disease clinical severity and is associated with tau- and amyloid-positron emission tomography. Alzheimers Dement 14(8):989–997CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    La Joie R et al (2018) Associations between [(18)F]AV1451 tau PET and CSF measures of tau pathology in a clinical sample. Neurology 90(4):e282–e290CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Mattsson N et al (2017) (18)F-AV-1451 and CSF T-tau and P-tau as biomarkers in Alzheimer’s disease. EMBO Mol Med 9(9):1212–1223CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Mattsson N et al (2018) Comparing (18)F-AV-1451 with CSF t-tau and p-tau for diagnosis of Alzheimer disease. Neurology 90(5):e388–e395CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Saint-Aubert L et al (2016) Regional tau deposition measured by [(18)F]THK5317 positron emission tomography is associated to cognition via glucose metabolism in Alzheimer’s disease. Alzheimers Res Ther 8(1):38CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Whitwell JL et al (2018) Imaging correlations of tau, amyloid, metabolism, and atrophy in typical and atypical Alzheimer’s disease. Alzheimers Dement 14(8):1005–1014CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Leuzy A et al (2018) Longitudinal uncoupling of cerebral perfusion, glucose metabolism, and tau deposition in Alzheimer’s disease. Alzheimers Dement 14(5):652–663CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Mainta IC et al. Agreement between T and N PET staging in patients with suspected Alzheimer’s Disease: a FDG/Flortaucipir PET study (submitted) Google Scholar

Copyright information

© Italian Association of Nuclear Medicine and Molecular Imaging 2018

Authors and Affiliations

  1. 1.Division of Nuclear Medicine and Molecular ImagingGeneva University HospitalsGenevaSwitzerland
  2. 2.NIMTlabGeneva UniversityGenevaSwitzerland
  3. 3.Memory CenterGeneva University HospitalsGenevaSwitzerland
  4. 4.LANVIEGeneva UniversityGenevaSwitzerland
  5. 5.Institute of Regenerative MedicineZurich University HospitalZurichSwitzerland

Personalised recommendations