Clinical and Translational Imaging

, Volume 6, Issue 6, pp 417–427 | Cite as

Hodgkin lymphoma and imaging in the era of anti-PD-1/PD-L1 therapy

  • Margarita Kirienko
  • Martina Sollini
  • Arturo Chiti
Expert Review
Part of the following topical collections:
  1. Lymphatic and hematological system


The assessment of treatment response is crucial for patient management since it guides further treatment or surveillance program. For the purpose of response evaluation in Hodgkin Lymphoma patients, contrast-enhanced CT (CECT) and fluorodeoxyglucose (FDG)–positron emission tomography (PET) were demonstrated to be the most reliable imaging modalities. Response criteria based on tumor size variations on CT and/or modification of tumor glycolytic metabolism on FDG PET have been designed for the assessment of response to chemotherapy and targeted molecular agents. The recent introduction of biological agents with immunological activity revealed the need for criteria revision and for novel biomarkers. The treatment response assessment using the standard criteria for defining anatomical or metabolic remission has been shown to be poorly fit for the immune checkpoint inhibitors since they may determine the “tumor flares”, a phenomenon that has not the same prognostic implications as progressive disease. Accordingly, the response evaluation criteria have been reviewed introducing as main novelty the concept of “pseudo-progression”. Furthermore, PD-1 blockade is not effective in all patients, and delayed or mixed tumor regression can be seen. Therefore, some biomarkers including the detection of PD-L1 on tumor cells, the identification of specific genetic signatures, the longitudinal track of the circulating cell-free DNA, and the imaged-derived parameters have been evaluated to predict response to anti-PD-1/PD-L1 therapy. The present paper reports the available evidence on the role of imaging in patients with HL and future directions for the investigations in the field, with the special focus on the treatment with immune checkpoint inhibitors.


Hodgkin lymphoma Nivolumab Pembrolizumab Anti-PD-1 PET/CT CT Biomarkers Response evaluation 



We thank Prof. Carlo Stella who referred, treated and managed the patients, and fruitfully collaborated with the authors.

Author contributions

MK and MS: Literature search and review, manuscript writing; AC: Manuscript writing and editing.

Compliance with ethical standards

Conflict of interest

A. Chiti received speaker honoraria from General Electric, Blue Earth Diagnostics and Sirtex Medical System, acted as scientific advisor for Blue Earth Diagnostics and Advanced Accelerator Applications, and benefited from an unconditional grant from Sanofi to Humanitas University. All honoraria and grants are outside the scope of the submitted work. All other authors have no conflicts of interest.

Research involving human participants

Not applicable.

Informed consent

Not applicable.


  1. 1.
    Eichenauer DA, Aleman BMP, André M et al (2018) Hodgkin lymphoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. CrossRefPubMedGoogle Scholar
  2. 2.
    Hoppe RT, Advani RH, Ai WZ et al (2017) Hodgkin lymphoma Version 1.2017: clinical practice guidelines in oncology. JNCCN J Natl Compr Cancer Netw 15:608–638CrossRefGoogle Scholar
  3. 3.
    Siegel RL, Miller KD, Jemal A (2017) Cancer statistics, 2017. CA Cancer J Clin 67:7–30. CrossRefGoogle Scholar
  4. 4.
    Galanina N, Kline J, Bishop MR (2017) Emerging role of checkpoint blockade therapy in lymphoma. Ther Adv Hematol 8:81–90. CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Ilcus C, Bagacean C, Tempescul A et al (2017) Immune checkpoint blockade: the role of PD-1-PD-L axis in lymphoid malignancies. Oncol Targets Ther 10:2349–2363. CrossRefGoogle Scholar
  6. 6.
    Ansell S, Lesokhin AM, Borrello I et al (2015) PD-1 blockade with nivolumab in relapsed or refractory Hodgkin’s lymphoma. N Engl J Med 372:311–319. CrossRefPubMedGoogle Scholar
  7. 7.
    Younes A, Santoro A, Shipp M et al (2016) Nivolumab for classical Hodgkin’s lymphoma after failure of both autologous stem-cell transplantation and brentuximab vedotin: a multicentre, multicohort, single-arm phase II trial. Lancet Oncol 17:1283–1294. CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Maruyama D, Hatake K, Kinoshita T et al (2017) Multicenter phase II study of nivolumab in Japanese patients with relapsed or refractory classical Hodgkin lymphoma. Cancer Sci 108:1007–1012. CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Armand P, Shipp MA, Ribrag V et al (2016) Programmed death-1 blockade with pembrolizumab in patients with classical Hodgkin lymphoma after brentuximab vedotin failure. J Clin Oncol 34:3733–3739. CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Moskowitz CH, Zinzani PL, Fanale MA et al (2016) Pembrolizumab in relapsed/refractory classical Hodgkin lymphoma: primary end point analysis of the phase II keynote-087 study. Blood 128:1107Google Scholar
  11. 11.
    Chan TSY, Luk TH, Lau JSM et al (2017) Low-dose pembrolizumab for relapsed/refractory Hodgkin lymphoma: high efficacy with minimal toxicity. Ann Hematol 96:647–651. CrossRefPubMedGoogle Scholar
  12. 12.
    Onizuka M, Kojima M, Matsui K et al (2017) Successful treatment with low-dose nivolumab in refractory Hodgkin lymphoma after allogeneic stem cell transplantation. Int J Hematol 106:141–145. CrossRefPubMedGoogle Scholar
  13. 13.
    Foran AE, Nadel HR, Lee AF et al (2016) Nivolumab in the treatment of refractory pediatric Hodgkin lymphoma. J Pediatr Hematol Oncol 39:1. CrossRefGoogle Scholar
  14. 14.
    Benjamini O, Lavie D, Dann EJ et al (2016) Real-life experience of nivolumab in heavily pretreated relapsed and refractory classical Hodgkin lymphoma. Blood 128:3008Google Scholar
  15. 15.
    Armand P, Engert A, Younes A et al (2018) Nivolumab for relapsed/refractory classic Hodgkin lymphoma after failure of autologous hematopoietic cell transplantation: extended follow-up of the multicohort single-arm phase II checkmate 205 trial. J Clin Oncol 36:1428–1439. CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
  17. 17.
    Borchmann S, von Tresckow B (2017) Novel agents in classical Hodgkin lymphoma. Leuk Lymphoma 8194:1–12. CrossRefGoogle Scholar
  18. 18.
    Sadeghi R, Treglia G (2017) Systematic reviews and meta-analyses of diagnostic studies: a practical guideline. Clin Transl Imaging 5:83–87. CrossRefGoogle Scholar
  19. 19.
    Jelinek T, Mihalyova J, Kascak M et al (2017) PD-1/PD-L1 inhibitors in haematological malignancies: update 2017. Immunology 152:357–371. CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Zou W, Wolchok JD, Chen L (2016) PD-L1 (B7-H1) and PD-1 pathway blockade for cancer therapy: mechanisms, response biomarkers, and combinations. Sci Transl Med 8:328rv4. CrossRefGoogle Scholar
  21. 21.
    Ansell SM (2017) Nivolumab in the treatment of Hodgkin lymphoma. Clin Cancer Res 23:1623–1626. CrossRefPubMedGoogle Scholar
  22. 22.
    Gordon SR, Maute RL, Dulken BW et al (2017) PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity. Nat 545:495–499. CrossRefGoogle Scholar
  23. 23.
    Roemer MGM, Advani RH, Ligon AH et al (2016) PD-L1 and PD-L2 genetic alterations define classical Hodgkin lymphoma and predict outcome. J Clin Oncol 34:2690–2697. CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Menter T, Bodmer-Haecki A, Dirnhofer S, Tzankov A (2016) Evaluation of the diagnostic and prognostic value of PDL1 expression in Hodgkin and B-cell lymphomas. Hum Pathol 54:17–24. CrossRefPubMedGoogle Scholar
  25. 25.
    Lister TA, Crowther D, Sutcliffe SB et al (1989) Report of a committee convened to discuss the evaluation and staging of patients with Hodgkin’s disease: cotswolds meeting. J Clin Oncol 7:1630–1636. CrossRefPubMedGoogle Scholar
  26. 26.
    Cheson BD, Horning SJ, Coiffier B et al (1999) Report of an international workshop to standardize response criteria for non-Hodgkin’s lymphomas. J Clin Oncol 17:1244. CrossRefPubMedGoogle Scholar
  27. 27.
    Cheson BD, Pfistner B, Juweid ME et al (2007) Revised response criteria for malignant lymphoma. J Clin Oncol 25:579–586. CrossRefPubMedGoogle Scholar
  28. 28.
    Van Heertum RL, Scarimbolo R, Wolodzko JG et al (2017) Lugano 2014 criteria for assessing FDG PET/CT in lymphoma: an operational approach for clinical trials. Drug Des Devel Ther 11:1719–1728. CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Meignan M, Gallamini A, Meignan M et al (2009) Report on the first international workshop on interim-PET-scan in lymphoma. Leuk Lymphoma 50:1257–1260. CrossRefPubMedGoogle Scholar
  30. 30.
    Cheson BD, Fisher RI, Barrington SF et al (2014) Recommendations for initial evaluation, staging, and response assessment of Hodgkin and non-Hodgkin lymphoma: the Lugano classification. J Clin Oncol 32:3059–3068. CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Barrington SF, Mikhaeel NG, Kostakoglu L et al (2014) Role of imaging in the staging and response assessment of lymphoma: consensus of the international conference on malignant lymphomas imaging working group. J Clin Oncol 32:3048–3058. CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Cheson BD, Ansell S, Schwartz L et al (2016) Refinement of the lugano Classification lymphoma response criteria in the era of immunomodulatory therapy. Blood 128:2489–2496. CrossRefPubMedGoogle Scholar
  33. 33.
    Younes A, Hilden P, Coiffier B et al (2017) International working group consensus response evaluation criteria in lymphoma (RECIL 2017). Ann Oncol 28:1436–1447. CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Eichenauer DA, Engert A, Andre M et al (2014) Hodgkin’s lymphoma: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol 25:iii70–iii75. CrossRefGoogle Scholar
  35. 35.
    Jain MD, Kuruvilla J (2017) Anti-PD-1 antibodies as a therapeutic strategy in classical Hodgkin lymphoma. Drugs 77:1645–1655. CrossRefPubMedGoogle Scholar
  36. 36.
    Kalimuthu S, Jeong JH, Oh JM, Ahn B-C (2017) Drug discovery by molecular imaging and monitoring therapy response in lymphoma. Int J Mol Sci 18:1639. CrossRefPubMedCentralGoogle Scholar
  37. 37.
    Seymour L, Bogaerts J, Perrone A et al (2017) iRECIST: guidelines for response criteria for use in trials testing immunotherapeutics. Lancet Oncol 18:e143–e152. CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Cheson BD, Ansell S, Schwartz L et al (2016) Perspectives refinement of the lugano classification lymphoma response criteria in the era of immunomodulatory therapy. Blood 128:2489–2497. CrossRefPubMedGoogle Scholar
  39. 39.
    Rossi C, Gilhodes J, Maerevoet M et al (2018) Efficacy of chemotherapy or chemo-anti-PD-1 combination after failed anti-PD-1 therapy for relapsed and refractory Hodgkin lymphoma: a series from lysa centers. Am J Hematol. CrossRefPubMedGoogle Scholar
  40. 40.
    Herrera AF, Moskowitz AJ, Bartlett NL et al (2018) Interim results of brentuximab vedotin in combination with nivolumab in patients with relapsed or refractory Hodgkin lymphoma. Blood 131:1183–1194. CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Chen R, Zinzani PL, Fanale MA et al (2017) Phase II study of the efficacy and safety of pembrolizumab for relapsed/refractory classic Hodgkin lymphoma. J Clin Oncol 35:2125–2132. CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Ok CY, Young KH (2017) Checkpoint inhibitors in hematological malignancies. J Hematol Oncol 10:1–16. CrossRefGoogle Scholar
  43. 43.
    Armand P (2015) Checkpoint blockade in lymphoma. Hematol Am Soc Hematol Educ Progr 2015:69–73. CrossRefGoogle Scholar
  44. 44.
    Topalian SL, Hodi FS, Brahmer JR et al (2012) Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 366:2443–2454. CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Vareki SM, Garrigós C, Duran I (2017) Biomarkers of response to PD-1/PD-L1 inhibition. Crit Rev Oncol Hematol 116:116–124. CrossRefGoogle Scholar
  46. 46.
    Patel SP, Kurzrock R (2015) PD-L1 expression as a predictive biomarker in cancer immunotherapy. Mol Cancer Ther 14:847–856CrossRefPubMedGoogle Scholar
  47. 47.
    Hansen AR, Siu LL, T M (2016) PD-L1 testing in cancer. JAMA Oncol 2:15. CrossRefPubMedGoogle Scholar
  48. 48.
    Mukherji D, Jabbour MN, Saroufim M et al (2016) Programmed death-ligand 1 expression in muscle-invasive bladder cancer cystectomy specimens and lymph node metastasis: a reliable treatment selection biomarker? Clin Genitourin Cancer 14:183–187. CrossRefPubMedGoogle Scholar
  49. 49.
    Topalian SL, Taube JM, Anders RA, Pardoll DM (2016) Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat Rev Cancer 16:275–287. CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Vandenberghe P, Wlodarska I, Tousseyn T et al (2015) Non-invasive detection of genomic imbalances in hodgkin/reed-sternberg cells in early and advanced stage Hodgkin’s lymphoma by sequencing of circulating cell-free DNA: a technical proof-of-principle study. Lancet Haematol 2:e55–e65. CrossRefPubMedGoogle Scholar
  51. 51.
    Spina V, Bruscaggin A, Cuccaro A et al (2018) Circulating tumor DNA reveals genetics, clonal evolution and residual disease in classical Hodgkin lymphoma. Blood 131:2413–2425. CrossRefPubMedGoogle Scholar
  52. 52.
    England CG, Rui L, Cai W (2017) Lymphoma: current status of clinical and preclinical imaging with radiolabeled antibodies. Eur J Nucl Med Mol Imaging 44:517–532. CrossRefGoogle Scholar
  53. 53.
    Dercle L, Seban R-D, Lazarovici J et al (2018) 18F-FDG PET and CT scans detect new imaging patterns of response and progression in patients with Hodgkin lymphoma treated by anti-programmed death 1 immune checkpoint inhibitor. J Nucl Med 59:15–24. CrossRefPubMedGoogle Scholar
  54. 54.
    Koh YW, Han J-H, Park SY et al (2017) GLUT1 as a prognostic factor for classical Hodgkin’s lymphoma: correlation with PD-L1 and PD-L2 expression. J Pathol Transl Med 51:152–158. CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Kumar V, Gu Y, Basu S et al (2012) Radiomics: the process and the challenges. Magn Reson Imaging 30:1234–1248. CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Ganeshan B, Miles KA, Babikir S et al (2017) CT-based texture analysis potentially provides prognostic information complementary to interim FDG PET for patients with Hodgkin’s and aggressive non-Hodgkin’s lymphomas. Eur Radiol 27:1012–1020. CrossRefGoogle Scholar
  57. 57.
    Ben Bouallègue F, Al Tabaa Y, Kafrouni M et al (2017) Association between textural and morphological tumor indices on baseline PET-CT and early metabolic response on interim PET-CT in bulky malignant lymphomas. Med Phys 44:4608–4619. CrossRefPubMedGoogle Scholar
  58. 58.
    Nardone V, Tini P, Aldi E et al (2017) Predictive value of CT texture analysis in lung cancer patients undergoing nivolumab | OncologyPRO. Ann Oncol 28:ii24–ii27CrossRefGoogle Scholar
  59. 59.
    Xie Y, Khunger M, Thawani R et al (2017) Evolution of radiomic features on serial CT scans as an imaging based biomarker for evaluating respo. J Clin Oncol 35:e14534CrossRefGoogle Scholar

Copyright information

© Italian Association of Nuclear Medicine and Molecular Imaging 2018

Authors and Affiliations

  1. 1.Department of Biomedical SciencesHumanitas UniversityMilanItaly
  2. 2.Nuclear MedicineHumanitas Clinical and Research CenterMilanItaly

Personalised recommendations