Clinical and Translational Imaging

, Volume 7, Issue 1, pp 21–32 | Cite as

Cardiac amyloidosis

  • Assuero GiorgettiEmail author
  • Dario Genovesi
  • Elisa Milan
  • Wanda Acampa
  • Raffaele Giubbini
  • Alberto Cuocolo
  • Paolo Marzullo
  • Italian Group of Nuclear Cardiology (GICN)
Part of the following topical collections:
  1. Cardiovascular



The aim of the present article was to review the recent developments in diagnosis, prognostication and management of cardiac amyloidosis.


Available scientific literature on cardiac amyloidosis has been critically reviewed.


Different precursors cause different forms of cardiac amyloidosis with different outcomes and therapeutic options. Cardiac involvement determines not-specific symptoms and the diagnosis remains often a challenge for cardiologists. As a consequence, patients continue to present end-stage heart failure when possible effective therapeutic interventions are of limited utility.


Advances in cardiac biomarkers assessment, echocardiography, cardiac magnetic resonance and nuclear molecular imaging have improved the ability of cardiologists in the recognition and prognostic stratification of this not so rare, not so untreatable cardiac disease.


Amyloidosis Biomarkers Cardiac imaging PET/CT 


Authors’ contribution

AG, DG, EM, WA: literature search and review, manuscript writing and editing; RG, AC, PM: manuscript content planning, revision and final approval.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.


  1. 1.
    Schleiden MJ (1842) Grundzige der wissenschaftlichen Botanik. Verlag von Wilhelm Engelmann, LeipzigGoogle Scholar
  2. 2.
    Virchow R (1854) Virchow’s Archiv für pathologische Anatomie und für klinische Medicin 135–138Google Scholar
  3. 3.
    Maleszewski JJ (2015) Cardiac amyloidosis: pathology, nomenclature, and typing. Cardiovasc Pathol 24(6):343–350Google Scholar
  4. 4.
    Palladini G, Merlini G (2016) What is new in diagnosis and management of light chain amyloidosis? Blood 128(2):159–168Google Scholar
  5. 5.
    Merlini G (2017) AL amyloidosis: from molecular mechanisms to targeted therapies. Hematol Am Soc Hematol Educ Program 1:1–12Google Scholar
  6. 6.
    Wechalekar AD, Gillmore JD, Hawkins PN (2016) Systemic amyloidosis. Lancet 387(10038):2641–2654Google Scholar
  7. 7.
    González-López E, González-López E, Gallego-Delgado M, Guzzo-Merello G, de Haro-Del Moral FJ, Cobo-Marcos M, Robles C, Bornstein B, Salas C, Lara-Pezzi E, Alonso-Pulpon L, Garcia-Pavia P (2015) Wild-type transthyretin amyloidosis as a cause of heart failure with preserved ejection fraction. Eur Heart J 36(38):2585–2594Google Scholar
  8. 8.
    Mohammed SF, Mirzoyev SA, Edwards WD, Dogan A, Grogan DR, Dunlay SM, Roger VL, Gertz MA, Dispenzieri A, Zeldenrust SR, Redfield MM (2014) Left ventricular amyloid deposition in patients with heart failure and preserved ejection fraction. JACC Heart Fail 2(2):113–122Google Scholar
  9. 9.
    Muchtar E, Blauwet LA, Gertz MA (2017) Restrictive cardiomyopathy. genetics, pathogenesis, clinical manifestations, diagnosis, and therapy. Circ Res 121:819–837Google Scholar
  10. 10.
    Kyle RA, Linos A, Beard CM, Linke RP, Gertz MA, O’Fallon WM, Kurland LT (1992) Incidence and natural history of primary systemic amyloidosis in Olmsted County, Minnesota, 1950 through 1989. Blood 79(7):1817–1822Google Scholar
  11. 11.
    Pinney JH, Smith CJ, Taube JB, Lachmann HJ, Venner CP, Gibbs SD, Dungu J, Banypersad SM, Wechalekar AD, Whelan CJ, Hawkins PN, Gillmore JD (2013) Systemic amyloidosis in England: an epidemiological study. Br J Haematol 161(4):525–532Google Scholar
  12. 12.
    Quock TP, Yan T, Chang E, Guthrie S, Broder MS (2018) Epidemiology of AL amyloidosis: a real-world study using US claims data. Blood Adv 2(10):1046–1053Google Scholar
  13. 13.
    Tanskanen M, Peuralinna T, Polvikoski T, Notkola IL, Sulkava R, Hardy J, Singleton A, Kiuru-Enari S, Paetau A, Tienari PJ, Myllykangas L (2008) Senile systemic amyloidosis affects 25% of the very aged and associates with genetic variation in alpha2-macroglobulin and tau: a population-based autopsy study. Ann Med 40:232–239Google Scholar
  14. 14.
    Coelho T, Maurer MS, Suhr OB (2013) THAOS—The Transthyretin Amyloidosis Outcomes Survey: initial report on clinical manifestations in patients with hereditary and wild-type transthyretin amyloidosis. Curr Med Res Opin 29:63–76Google Scholar
  15. 15.
    Maurer MS, Hanna M, Grogan M, Dispenzieri A, Witteles R, Drachman B, Judge DP, Lenihan DJ, Gottlieb SS, Shah SJ, Steidley DE, Ventura H, Murali S, Silver MA, Jacoby D, Fedson S, Hummel SL, Kristen AV, Damy T, Planté-Bordeneuve V, Coelho T, Mundayat R, Suhr OB, Waddington Cruz M, Rapezzi C, Investigators THAOS (2016) Genotype and Phenotype of Transthyretin Cardiac Amyloidosis: THAOS (Transthyretin Amyloid Outcome Survey). J Am Coll Cardiol 68:161–172Google Scholar
  16. 16.
    Pinney JH, Whelan CJ, Petrie A, Dungu J, Banypersad SM, Sattianayagam P, Wechalekar A, Gibbs SD, Venner CP, Wassef N, McCarthy CA, Gilbertson JA, Rowczenio D, Hawkins PN, Gillmore JD, Lachmann HJ (2013) Senile systemic amyloidosis: clinical features at presentation and outcome. J Am Heart Assoc 2(2):e000098. Google Scholar
  17. 17.
    Kristen AV, Maurer MS, Rapezzi C, Mundayat R, Suhr OB, Damy T, THAOS Investigators (2017) Impact of genotype and phenotype on cardiac biomarkers in patients with transthyretin amyloidosis—report from the Transthyretin Amyloidosis Outcome Survey (THAOS). PLoS ONE 12(4):e0173086. Google Scholar
  18. 18.
    Damy T, Jaccard A, Guellich A, Lavergne D, Galat A, Deux JF, Hittinger L, Dupuis J, Frenkel V, Rigaud C, Plante-Bordeneuve V, Bodez D, Mohty D (2016) Identification of prognostic markers in transthyretin and AL cardiac amyloidosis. Amyloid 23(3):194–202Google Scholar
  19. 19.
    Palladini G, Barassi A, Perlini S, Milani P, Foli A, Russo P, Albertini R, Obici L, Lavatelli F, Sarais G, Casarini S, Moratti R, Melzi d’Eril GV, Merlini G (2011) Midregional proadrenomedullin (MR-proADM) is a powerful predictor of early death in AL amyloidosis. Amyloid 18(4):216–221Google Scholar
  20. 20.
    Mohty D, Pibarot P, Dumesnil JG, Darodes N, Lavergne D, Echahidi N, Virot P, Bordessoule D, Jaccard A (2011) Left atrial size is an independent predictor of overall survival in patients with primary systemic amyloidosis. Arch Cardiovasc Dis 104:611–618Google Scholar
  21. 21.
    Bellavia D, Pellikka PA, Dispenzieri A, Scott CG, Al-Zahrani GB, Grogan M, Pitrolo F, Oh JK, Miller FA Jr (2012) Comparison of right ventricular longitudinal strain imaging, tricuspid annular plane systolic excursion, and cardiac biomarkers for early diagnosis of cardiac involvement and risk stratification in primary systematic (AL) amyloidosis: a 5-year cohort study. Eur Heart J Cardiovasc Imaging 13:680–689Google Scholar
  22. 22.
    Phelan D, Collier P, Thavendiranathan P, Popović ZB, Hanna M, Plana JC, Marwick TH, Thomas JD (2012) Relative apical sparing of longitudinal strain using two-dimensional speckle-tracking echocardiography is both sensitive and specific for the diagnosis of cardiac amyloidosis. Heart 98:1442–1448Google Scholar
  23. 23.
    Fontana M, Chung R, Hawkins PN, Moon JC (2015) Cardiovascular magnetic resonance for amyloidosis. Heart Fail Rev 20:133–144Google Scholar
  24. 24.
    Fontana M, Pica S, Reant P, Abdel-Gadir A, Treibel TA, Banypersad SM, Maestrini V, Barcella W, Rosmini S, Bulluck H, Sayed RH, Patel K, Mamhood S, Bucciarelli-Ducci C, Whelan CJ, Herrey AS, Lachmann HJ, Wechalekar AD, Manisty CH, Schelbert EB, Kellman P, Gillmore JD, Hawkins PN, Moon JC (2015) Prognostic value of late gadolinium enhancement cardiovascular magnetic resonance in cardiac amyloidosis. Circulation 132:1570–1579Google Scholar
  25. 25.
    Banypersad SM, Sado DM, Flett AS, Gibbs SD, Pinney JH, Maestrini V, Cox AT, Fontana M, Whelan CJ, Wechalekar AD, Hawkins PN, Moon JC (2013) Quantification of myocardial extracellular volume fraction in systemic AL amyloidosis: an equilibrium contrast cardiovascular magnetic resonance study. Circ Cardiovasc Imaging 6:34–39Google Scholar
  26. 26.
    Hawkins PN, Lavender JP, Pepys MB (1990) Evaluation of systemic amyloidosis by scintigraphy with 123I-labeled serum amyloid P component. N Engl J Med 323:508–513Google Scholar
  27. 27.
    Hazenberg BP, van Rijswijk MH, Piers DA, Lub-de Hooge MN, Vellenga E, Haagsma EB, Hawkins PN, Jager PL (2006) Diagnostic performance of 123I-labeled serum amyloid P component scintigraphy in patients with amyloidosis. Am J Med 119:355.e15–355.e24Google Scholar
  28. 28.
    Hawkins PN, Wootton R, Pepys MB (1990) Metabolic studies of radioiodinated serum amyloid P component in normal subjects and patients with systemic amyloidosis. J Clin Invest 86:1862–1869Google Scholar
  29. 29.
    Hachulla E, Maulin L, Deveaux M, Facon T, Blétry O, Vanhille P, Wechsler B, Godeau P, Levesque H, Hatron PY, Huglo D, Devulder B, Marchandise X (1996) Prospective and serial study of primary amyloidosis with serum amyloid P component scintigraphy: from diagnosis to prognosis. Am J Med 101:77–87Google Scholar
  30. 30.
    Aprile C, Marinone G, Saponaro R, Bonino C, Merlini G (1995) Cardiac and pleuropulmonary AL amyloid imaging with technetium-99m labeled aprotinin. Eur J Nucl Med 22:1393–1401Google Scholar
  31. 31.
    Schaadt BK, Hendel HW, Gimsing P, Jønsson V, Pedersen H, Hesse B (2003) 99mTc-aprotinin scintigraphy in amyloidosis. J Nucl Med 44:177–183Google Scholar
  32. 32.
    Tanaka M, Hongo M, Kinoshita O, Takabayashi Y, Fujii T, Yazaki Y, Isobe M, Sekiguchi M (1997) Iodine-123 metaiodobenzylguanidine scintigraphic assessment of myocardial sympathetic innervation in patients with familial amyloid polyneuropathy. J Am Coll Cardiol 29:168–174Google Scholar
  33. 33.
    Delahaye N, Dinanian S, Slama MS, Mzabi H, Samuel D, Adams D, Merlet P, Le Guludec D (1999) Cardiac sympathetic denervation in familial amyloid polyneuropathy assessed by iodine-123 metaiodobenzylguanidine scintigraphy and heart rate variability. Eur J Nucl Med 26:416–424Google Scholar
  34. 34.
    Coutinho MC, Cortez-Dias N, Cantinho G, Conceição I, Oliveira A, Bordalo e Sá A, Gonçalves S, Almeida AG, de Carvalho M, Diogo AN (2013) Reduced myocardial 123-iodine metaiodobenzylguanidine uptake: a prognostic marker in familial amyloid polyneuropathy. Circ Cardiovasc Imaging 6(5):627–636Google Scholar
  35. 35.
    Falk RH, Lee VW, Rubinow A, Hood WB Jr., Cohen AS (1983) Sensitivity of technetium-99m-pyrophosphate scintigraphy in diagnosing cardiac amyloidosis. Am J Cardiol 51:826–830Google Scholar
  36. 36.
    Perugini E, Guidalotti PL, Salvi F, Cooke RM, Pettinato C, Riva L, Leone O, Farsad M, Ciliberti P, Bacchi-Reggiani L, Fallani F, Branzi A, Rapezzi C (2005) Noninvasive etiologic diagnosis of cardiac amyloidosis using 99mTc-3,3-diphosphono-1,2-propanodicarboxylic acid scintigraphy. J Am Coll Cardiol 46(6):1076–1084Google Scholar
  37. 37.
    Gillmore JD, Maurer MS, Falk RH, Merlini G, Damy T, Dispenzieri A, Wechalekar AD, Berk JL, Quarta CC, Grogan M, Lachmann HJ, Bokhari S, Castano A, Dorbala S, Johnson GB, Glaudemans AW, Rezk T, Fontana M, Palladini G, Milani P, Guidalotti PL, Flatman K, Lane T, Vonberg FW, Whelan CJ, Moon JC, Ruberg FL, Miller EJ, Hutt DF, Hazenberg BP, Rapezzi C, Hawkins PN (2016) Nonbiopsy diagnosis of cardiac transthyretin amyloidosis. Circulation 133(24):2404–2412Google Scholar
  38. 38.
    Stats MA, Stone JR (2016) Varying levels of small microcalcifications and macrophages in ATTR and AL cardiac amyloidosis: implications for utilizing nuclear medicine studies to subtype amyloidosis. Cardiovasc Pathol 25(5):413–417Google Scholar
  39. 39.
    Klunk WE, Engler H, Nordberg A, Wang Y, Blomqvist G, Holt DP, Bergström M, Savitcheva I, Huang GF, Estrada S, Ausén B, Debnath ML, Barletta J, Price JC, Sandell J, Lopresti BJ, Wall A, Koivisto P, Antoni G, Mathis CA, Långström B (2004) Imaging brain amyloid in Alzheimer’s disease with Pittsburgh compound-B. Ann Neurol 55(3):306–319Google Scholar
  40. 40.
    Heurling K, Leuzy A, Zimmer ER, Lubberink M, Nordberg A (2016) Imaging β-amyloid using [(18)F]flutemetamol positron emission tomography: from dosimetry to clinical diagnosis. Eur J Nucl Med Mol Imaging 43(2):362–373Google Scholar
  41. 41.
    Law WP, Wang WY, Moore PT, Mollee PN, Ng AC (2016) Cardiac amyloid imaging with 18F-florbetaben PET: a pilot study. J Nucl Med 57(11):1733–1739Google Scholar
  42. 42.
    Clark CM, Schneider JA, Bedell BJ, Beach TG, Bilker WB, Mintun MA, Pontecorvo MJ, Hefti F, Carpenter AP, Flitter ML, Krautkramer MJ, Kung HF, Coleman RE, Doraiswamy PM, Fleisher AS, Sabbagh MN, Sadowsky CH, Reiman EP, Zehntner SP, Skovronsky DM, AV45-A07 Study Group (2011) Use of florbetapir-PET for imaging beta-amyloid pathology. JAMA 305(3):275–283Google Scholar
  43. 43.
    Antoni G, Lubberink M, Estrada S, Axelsson J, Carlson K, Lindsjö L, Kero T, Långström B, Granstam SO, Rosengren S, Vedin O, Wassberg C, Wikström G, Westermark P, Sörensen J (2013) In vivo visualization of amyloid deposits in the heart with 11C-PIB and PET. J Nucl Med 54:213–220Google Scholar
  44. 44.
    Lee SP, Lee ES, Choi H, Im HJ, Koh Y, Lee MH, Kwon JH, Paeng JC, Kim HK, Cheon GJ, Kim YJ, Kim I, Yoon SS, Seo JW, Sohn DW (2015) 11C-Pittsburgh B PET imaging in cardiac amyloidosis. JACC Cardiovasc Imaging 8(1):50–59Google Scholar
  45. 45.
    Pilebro B, Arvidsson S, Lindqvist P, Sundström T, Westermark P, Antoni G, Suhr O, Sörensen J (2018) Positron emission tomography (PET) utilizing Pittsburgh compound B (PIB) for detection of amyloid heart deposits in hereditary transthyretin amyloidosis (ATTR). J Nucl Cardiol 25(1):240–248Google Scholar
  46. 46.
    Lhommel R, Sempoux C, Ivanoiu A, Michaux L, Gerber B (2014) Is 18F-flutemetamol PET/CT able to reveal cardiac amyloidosis? Clin Nucl Med 39(8):747–749Google Scholar
  47. 47.
    Dorbala S, Vangala D, Semer J, Strader C, Bruyere JR Jr., Di Carli MF, Moore SC, Falk RH (2014) Imaging cardiac amyloidosis: a pilot study using (18)F-florbetapir positron emission tomography. Eur J Nucl Med Mol Imaging 41(9):1652–1662Google Scholar
  48. 48.
    Park MA, Padera RF, Belanger A, Dubey S, Hwang DH, Veeranna V, Falk RH, Di Carli MF, Dorbala S (2015) 18F-Florbetapir binds specifically to myocardial light chain and transthyretin amyloid deposits: autoradiography study. Circ Cardiovasc Imaging. Google Scholar
  49. 49.
    Osborne DR, Acuff SN, Stuckey A, Wall JS (2015) A routine PET/CT protocol with streamlined calculations for assessing cardiac amyloidosis using (18)F-florbetapir. Front Cardiovasc Med 2:23. Google Scholar
  50. 50.
    Genovesi D, Vergaro G, Emdin M, Giorgetti A, Marzullo P (2017) PET-CT evaluation of amyloid systemic involvement with [18F]-florbetaben in patient with proved cardiac amyloidosis: a case report. J Nucl Cardiol 24(6):2025–2029Google Scholar
  51. 51.
    Libbey CA, Skinner M, Cohen AS (1983) Use of abdominal fat tissue aspirate in the diagnosis of systemic amyloidosis. Arch Intern Med 143:1549–1552Google Scholar
  52. 52.
    Gertz MA, Li CY, Shirahama T, Kyle RA (1988) Utility of subcutaneous fat aspiration for the diagnosis of systemic amyloidosis (immunoglobulin light chain). Arch Intern Med 148:929–933Google Scholar
  53. 53.
    Quarta CC, Gonzalez-Lopez E, Gilbertson JA, Botcher N, Rowczenio D, Petrie A, Rezk T, Youngstein T, Mahmood S, Sachchithanantham S, Lachmann HJ, Fontana M, Whelan CJ, Wechalekar AD, Hawkins PN, Gillmore JD (2017) Diagnostic sensitivity of abdominal fat aspiration in cardiac amyloidosis. Eur Heart J 38:1905–1908Google Scholar
  54. 54.
    Frustaci A, Pieroni M, Chimenti C (2002) The role of endomyocardial biopsy in the diagnosis of cardiomyopathies. Ital Heart J 3:348–353Google Scholar
  55. 55.
    Vrana JA, Gamez JD, Madden BJ, Theis JD, Bergen HR 3rd, Dogan A (2009) Classification of amyloidosis by laser microdissection and mass spectrometry-based proteomic analysis in clinical biopsy specimens. Blood 114:4957–4959Google Scholar
  56. 56.
    Grupper A, Park SJ, Pereira NL, Schettle SD, Gerber Y, Topilsky Y, Edwards BS, Daly RC, Stulak JM, Joyce LD, Kushwaha SS (2015) Role of ventricular assist therapy for patients with heart failure and restrictive physiology: improving outcomes for a lethal disease. J Heart Lung Transplant 34:1042–1049Google Scholar
  57. 57.
    Lin G, Dispenzieri A, Kyle R, Grogan M, Brady PA (2013) Implantable cardioverter defibrillators in patients with cardiac amyloidosis. J Cardiovasc Electrophysiol 24:793–798Google Scholar
  58. 58.
    Merlini G, Seldin DC, Gertz MA (2011) Amyloidosis: pathogenesis and new therapeutic options. J Clin Oncol 29:1924–1933Google Scholar
  59. 59.
    Berk JL, Suhr OB, Obici L, Sekijima Y, Zeldenrust SR, Yamashita T, Heneghan MA, Gorevic PD, Litchy WJ, Wiesman JF, Nordh E, Corato M, Lozza A, Cortese A, Robinson-Papp J, Colton T, Rybin DV, Bisbee AB, Ando Y, Ikeda S, Seldin DC, Merlini G, Skinner M, Kelly JW, Dyck PJ, Diflunisal Trial Consortium (2013) Repurposing diflunisal for familial amyloid polyneuropathy: a randomized clinical trial. JAMA 310:2658–2667Google Scholar
  60. 60.
    Coelho T, Maia LF, Martins da Silva A, Waddington Cruz M, Planté-Bordeneuve V, Lozeron P, Suhr OB, Campistol JM, Conceição IM, Schmidt HH, Trigo P, Kelly JW, Labaudinière R, Chan J, Packman J, Wilson A, Grogan DR (2012) Tafamidis for transthyretin familial amyloid polyneuropathy: a randomized, controlled trial. Neurology 79:785–792Google Scholar
  61. 61.
    Damy T, Judge DP, Kristen AV, Berthet K, Li H, Aarts J (2015) Cardiac findings and events observed in an open-label clinical trial of tafamidis in patients with non-Val30Met and non-Val122Ile hereditary transthyretin amyloidosis. J Cardiovasc Transl Res 8:117–127Google Scholar
  62. 62.
    Castaño A, Helmke S, Alvarez J, Delisle S, Maurer MS (2012) Diflunisal for ATTR cardiac amyloidosis. Congest Heart Fail 18:315–319Google Scholar
  63. 63.
    Obici L, Cortese A, Lozza A, Lucchetti J, Gobbi M, Palladini G, Perlini S, Saraiva MJ, Merlini G (2012) Doxycycline plus tauroursodeoxycholic acid for transthyretin amyloidosis: a phase II study. Amyloid Suppl 1:34–36Google Scholar
  64. 64.
    Benson MD, Kluve-Beckerman B, Zeldenrust SR, Siesky AM, Bodenmiller DM, Showalter AD, Sloop KW (2006) Targeted suppression of an amyloidogenic transthyretin with antisense oligonucleotides. Muscle Nerve 33(5):609–618Google Scholar
  65. 65.
    Benson MD, Waddington-Cruz M, Berk JL, Polydefkis M, Dyck PJ, Wang AK, Planté-Bordeneuve V, Barroso FA, Merlini G, Obici L, Scheinberg M, Brannagan TH 3rd, Litchy WJ, Whelan C, Drachman BM, Adams D, Heitner SB, Conceição I, Schmidt HH, Vita G, Campistol JM, Gamez J, Gorevic PD, Gane E, Shah AM, Solomon SD, Monia BP, Hughes SG, Kwoh TJ, McEvoy BW, Jung SW, Baker BF, Ackermann EJ, Gertz MA, Coelho T (2018) Inotersen Treatment for Patients with Hereditary Transthyretin Amyloidosis. N Engl J Med 379(1):22–31Google Scholar
  66. 66.
    Ericzon BG, Wilczek HE, Larsson M, Wijayatunga P, Stangou A, Pena JR, Furtado E, Barroso E, Daniel J, Samuel D, Adam R, Karam V, Poterucha J, Lewis D, Ferraz-Neto BH, Cruz MW, Munar-Ques M, Fabregat J, Ikeda S, Ando Y, Heaton N, Otto G, Suhr O (2015) Liver transplantation for hereditary transthyretin amyloidosis: after 20 years still the best therapeutic alternative? Transplantation 99:1847–1854Google Scholar
  67. 67.
    Muchtar E, Gertz MA, Kumar SK, Lacy MQ, Dingli D, Buadi FK, Grogan M, Hayman SR, Kapoor P, Leung N, Fonder A, Hobbs M, Hwa YL, Gonsalves W, Warsame R, Kourelis TV, Russell S, Lust JA, Lin Y, Go RS, Zeldenrust S, Kyle RA, Rajkumar SV, Dispenzieri A (2017) Improved outcomes for newly diagnosed AL amyloidosis between 2000 and 2014: cracking the glass ceiling of early death. Blood 129:2111–2119Google Scholar
  68. 68.
    Kumar S, Dispenzieri A, Lacy MQ, Hayman SR, Buadi FK, Colby C, Laumann K, Zeldenrust SR, Leung N, Dingli D, Greipp PR, Lust JA, Russell SJ, Kyle RA, Rajkumar SV, Gertz MA (2012) Revised prognostic staging system for light chain amyloidosis incorporating cardiac biomarkers and serum free light chain measurements. J Clin Oncol 30:b989–b995Google Scholar
  69. 69.
    Banypersad SM, Fontana M, Maestrini V, Sado DM, Captur G, Petrie A, Piechnik SK, Whelan CJ, Herrey AS, Gillmore JD, Lachmann HJ, Wechalekar AD, Hawkins PN, Moon JC (2015) T1mapping and survival in systemic light-chain amyloidosis. Eur Heart J 36:244–251Google Scholar
  70. 70.
    Gertz MA, Benson MD, Dyck PJ, Grogan M, Coelho T, Cruz M, Berk JL, Plante-Bordeneuve V, Schmidt HHJ, Merlini G (2015) Diagnosis, prognosis, and therapy of transthyretin amyloidosis. J Am Coll Cardiol 66:2451–2466Google Scholar
  71. 71.
    Grogan M, Scott CG, Kyle RA, Zeldenrust SR, Gertz MA, Lin G, Klarich KW, Miller WL, Maleszewski JJ, Dispenzieri A (2016) Natural history of wild-type transthyretin cardiac amyloidosis and risk stratification using a novel staging system. J Am Coll Cardiol 68:1014–1020Google Scholar
  72. 72.
    Castano A, Haq M, Narotsky DL, Goldsmith J, Weinberg RL, Morgenstern R, Pozniakoff T, Ruberg FL, Miller EJ, Berk JL, Dispenzieri A, Grogan M, Johnson G, Bokhari S, Maurer MS (2016) Multicenter study of planar technetium 99m pyrophosphate cardiac imaging: predicting survival for patients with ATTR cardiac amyloidosis. JAMA Cardiol. 1:880–889Google Scholar

Copyright information

© Italian Association of Nuclear Medicine and Molecular Imaging 2019

Authors and Affiliations

  • Assuero Giorgetti
    • 1
    Email author
  • Dario Genovesi
    • 1
  • Elisa Milan
    • 2
  • Wanda Acampa
    • 3
  • Raffaele Giubbini
    • 4
  • Alberto Cuocolo
    • 3
  • Paolo Marzullo
    • 1
  • Italian Group of Nuclear Cardiology (GICN)
  1. 1.Fondazione CNR/Regione Toscana “Gabriele Monasterio”PisaItaly
  2. 2.Nuclear Medicine UnitSan Giacomo Apostolo HospitalCastelfranco VenetoItaly
  3. 3.Department of Advanced Biomedical SciencesUniversity Federico IINaplesItaly
  4. 4.Chair of Nuclear Medicine and Nuclear Medicine Unit, Department of Medical ImagingUniversity and Spedali CiviliBresciaItaly

Personalised recommendations