Advertisement

Lettera Matematica

, Volume 6, Issue 4, pp 221–225 | Cite as

The mathematics of Marx

In the bicentenary of the birth of Karl Marx (1818–1883)
  • Andrea RicciEmail author
Article
  • 10 Downloads

Abstract

The Mathematical Manuscripts are the least known work of Karl Marx, in which the rediscovery of mathematics coincided with the revival of Hegel’s Logic. They are primarily dedicated to the logical foundation of differential calculus. Marx’s method is historical-genetic, identical to that used in his critique of Political Economy. His aim is to derive the derivative directly from the process of variation of the function, so that its algebraic, real origin is met. In previous methods, the differentials were individual entities with substantial content. In Marx, instead, they are inseparable as numerator and denominator in the differential ratio, which is a unitary operational symbol indicating an ordered set of logical operations. This notion is strikingly similar to the modern concept of algorithm, making Marx a precursor of the modern computational mathematics.

Keywords

Karl Marx Marx’s Mathematical Manuscripts Differential calculus Dialectics Political economy 

Notes

References

  1. 1.
    Alcouffe, A.: Marx, Hegel et le “Calcul”. In: Marx, K. (ed). Les Manuscrits Mathematiques. Economica, Paris (1985)Google Scholar
  2. 2.
    Alcouffe, A., Wells, J.: Marx, maths and MEGA 2, MPRA Paper n. 80535, April (2009)Google Scholar
  3. 3.
    Baksi, P.. In: Marx, K.: (ed.): Special supplement. In: Mathematical Manuscripts. Viswakos Parisad, Kolkata (1994)Google Scholar
  4. 4.
    Brenner, A.D.: Emil J. Gumbel: Weimar German Pacifist and Professor. Brill, Leiden (2001)Google Scholar
  5. 5.
    Carchedi, G.: Dialectics and temporality in Marx’s mathematical manuscripts. Sci. Soc. 72(4), 415–426 (2008)CrossRefGoogle Scholar
  6. 6.
    Dauben, J.: Matematica e ideologia: la politica degli infinitesimali. Matematicamente.it Magazine 22, 29–60 (2014)Google Scholar
  7. 7.
    Engels, F.: Herrn Eugen Dührings Umwälzung der Wissenschaft. Leipzig (1885); Engl. transl. by Emile Burns, Anti-Dühring. Herr Eugen Dühring’s Revolution in Science, 2nd edn. Progress Publishers, Moscow (1947)Google Scholar
  8. 8.
    Engels, F.: Karl Marx’s funeral. In: MECW, vol. 24, p. 468. Lawrence & Wishart, London (2010)Google Scholar
  9. 9.
    Gerdes, P.: Marx Demystifies Calculus. Studies in Marxism, vol. 16. MEP Publications, University of Minnesota, Minneapolis (1985)Google Scholar
  10. 10.
    Guerraggio, A., Vidoni, F.: Nel laboratorio di Marx: scienze naturali e matematica. Franco Angeli, Milano (1983)Google Scholar
  11. 11.
    Kennedy, H.: Negation of the Negation: Karl Marx and Differential Calculus. Peremptory Publications, Concord (2006)Google Scholar
  12. 12.
    Lenin, V.I.: Materialism and Empirio-criticism. Zveno Publishers, Moscow: (1909). In: Lenin Collected Works, vol. 14, pp. 17–362, Progress Publishers, Moscow (1972)Google Scholar
  13. 13.
    Marx, K.: Mathematical Manuscripts. Viswakos Parisad, Kolkata (1994)Google Scholar
  14. 14.
    Marx, K., Engels, F.: Collected Works. Lawrence & Wishart, London (1983)Google Scholar
  15. 15.
    Matthews, P.H.: The Dialectics of Differentiation. Middlebury College Economics Discussion Paper n. 02-03 (2002)Google Scholar
  16. 16.
    Smolinski, L.: Karl Marx and mathematical economics. J. Polit. Econ. 81, 1189–1204 (1973)CrossRefGoogle Scholar
  17. 17.
    Struik, D.: Marx and mathematics. Sci. Soc. 12(1), 181–196 (1948)MathSciNetGoogle Scholar

Copyright information

© Centro P.RI.ST.EM, Università Commerciale Luigi Bocconi 2018

Authors and Affiliations

  1. 1.Dipartimento di Economia Società e PoliticaUniversità di UrbinoUrbinoItaly

Personalised recommendations