SeMA Journal

pp 1–46 | Cite as

Shape optimization of a coupled thermal fluid–structure problem in a level set mesh evolution framework

  • F. Feppon
  • G. Allaire
  • F. Bordeu
  • J. Cortial
  • C. Dapogny


Hadamard’s method of shape differentiation is applied to topology optimization of a weakly coupled three physics problem. The coupling is weak because the equations involved are solved consecutively, namely the steady state Navier–Stokes equations for the fluid domain, first, the convection diffusion equation for the whole domain, second, and the linear thermo-elasticity system in the solid domain, third. Shape sensitivities are derived in a fully Lagrangian setting which allows us to obtain shape derivatives of general objective functions. An emphasis is given on the derivation of the adjoint interface condition dual to the one of equality of the normal stresses at the fluid solid interface. The arguments allowing to obtain this surprising condition are specifically detailed on a simplified scalar problem. Numerical test cases are presented using the level set mesh evolution framework of Allaire et al. (Appl Mech Eng 282:22–53, 2014). It is demonstrated how the implementation enables to treat a variety of shape optimization problems.


Topology and shape optimization Adjoint methods Fluid structure interaction Convective heat transfer Adaptive remeshing 

Mathematics Subject Classification

49Q10 Optimization of shapes other than minimal surfaces 74P15 Topological methods 74P20 Geometrical methods 



This work was supported by the Association Nationale de la Recherche et de la Technologie (ANRT) [Grant number CIFRE 2017/0024]. G. A. is a member of the DEFI project at INRIA Saclay Ile-de-France. The work of G. A. is partially supported by the SOFIA project, funded by BPI (Banque Publique d’Investissement). The work of C. D. is partially supported by the IRS-CAOS Grant from Université Grenoble-Alpes.


  1. 1.
    Allaire, G.: Conception Optimale de Structures. Mathématiques & Applications (Berlin) [Mathematics and Applications], vol. 58. Springer, Berlin (2007)Google Scholar
  2. 2.
    Allaire, G.: Shape Optimization by the Homogenization Method, vol. 146. Springer Science & Business Media, Berlin (2012)zbMATHGoogle Scholar
  3. 3.
    Allaire, G., Pantz, O.: Structural optimization with freefem++. Struct. Multidiscip. Optim. 32(3), 173–181 (2006)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Allaire, G., Dapogny, C., Frey, P.: A mesh evolution algorithm based on the level set method for geometry and topology optimization. Struct. Multidiscip. Optim. 48(4), 711–715 (2013)MathSciNetGoogle Scholar
  5. 5.
    Allaire, G., Dapogny, C., Frey, P.: Shape optimization with a level set based mesh evolution method. Comput. Methods Appl. Mech. Eng. 282, 22–53 (2014)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Allaire, G., Jouve, F., Toader, A.M.: A level-set method for shape optimization. C. R. Math. 334(12), 1125–1130 (2002)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Allaire, G., Jouve, F., Toader, A.-M.: Structural optimization using sensitivity analysis and a level-set method. J. Comput. Phys. 194(1), 363–393 (2004)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Bendsoe, M.P., Sigmund, O.: Topology Optimization. Theory, Methods and Applications. Springer, Berlin (2003)zbMATHGoogle Scholar
  9. 9.
    Borrvall, T., Petersson, J.: Topology optimization of fluids in Stokes flow. Int. J. Numer. Methods Fluids 41(1), 77–107 (2003)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Bourdin, B., Chambolle, A.: Design-dependent loads in topology optimization. ESAIM Control Optim. Calc. Var. 9, 19–48 (2003)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Boyer, F.: Trace theorems and spatial continuity properties for the solutions of the transport equation. Differ. Integral Equ. 18(8), 891–934 (2005)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Brezis, H.: Functional Analysis. Sobolev Spaces and Partial Differential Equations. Springer Science & Business Media, Berlin (2010)Google Scholar
  13. 13.
    Bui, C., Dapogny, C., Frey, P.: An accurate anisotropic adaptation method for solving the level set advection equation. Int. J. Numer. Methods Fluids 70(7), 899–922 (2012)MathSciNetGoogle Scholar
  14. 14.
    Burger, M.: A framework for the construction of level set methods for shape optimization and reconstruction. Interfaces Free Bound. 5(3), 301–329 (2003)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Céa, J.: Conception optimale ou identification de formes, calcul rapide de la dérivée directionnelle de la fonction coût. ESAIM Math. Model. Numer. Anal. 20(3), 371–402 (1986)zbMATHGoogle Scholar
  16. 16.
    Chukwudozie, C.P.: Shape optimization for drag minimization using the Navier–Stokes equation. Master’s thesis, Louisiana State University (2015)Google Scholar
  17. 17.
    Dapogny, C.: Optimisation de formes, méthode des lignes de niveaux sur maillages non structurés et évolution de maillages. Ph.D. thesis, Université Pierre et Marie Curie-Paris VI (2013)Google Scholar
  18. 18.
    Dapogny, C., Frey, P.: Computation of the signed distance function to a discrete contour on adapted triangulation. Calcolo 49(3), 193–219 (2012)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Dapogny, C., Dobrzynski, C., Frey, P.: Three-dimensional adaptive domain remeshing, implicit domain meshing, and applications to free and moving boundary problems. J. Comput. Phys. 262, 358–378 (2014)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Dapogny, C., Faure, A., Michailidis, G., Allaire, G., Couvelas, A., Estevez, R.: Geometric constraints for shape and topology optimization in architectural design. Comput. Mech. 59(6), 933–965 (2017)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Dapogny, C., Frey, P., Omnès, F., Privat, Y.: Geometrical shape optimization in fluid mechanics using FreeFem++. HAL preprint hal-01481707, March (2017)Google Scholar
  22. 22.
    Dbouk, T.: A review about the engineering design of optimal heat transfer systems using topology optimization. Appl. Therm. Eng. 112, 841–854 (2017)Google Scholar
  23. 23.
    de Gournay, F.: Velocity extension for the level-set method and multiple eigenvalues in shape optimization. SIAM J. Control Optim. 45(1), 343–367 (2006)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Delfour, M.C., Zolésio, J.-P.: Shapes and Geometries: Metrics, Analysis, Differential Calculus, and Optimization. SIAM, Philadelphia (2011)zbMATHGoogle Scholar
  25. 25.
    Dilgen, C., Dilgen, S., Fuhrman, D., Sigmund, O., Lazarov, B.: Topology optimization of turbulent flows. Comput. Methods Appl. Mech. Eng. 331, 363–393 (2018)MathSciNetGoogle Scholar
  26. 26.
    Ern, A., Guermond, J.-L.: Theory and Practice of Finite Elements, vol. 159. Springer Science & Business Media, Berlin (2013)zbMATHGoogle Scholar
  27. 27.
    Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions. CRC Press, Boca Raton (2015)zbMATHGoogle Scholar
  28. 28.
    Frey, P., George, P.L.: Mesh Generation: Application to Finite Elements. Wiley Online Library, New York (2000)zbMATHGoogle Scholar
  29. 29.
    Giacomini, M., Pantz , O., Trabelsi, K.: Volumetric expressions of the shape gradient of the compliance in structural shape optimization. arXiv preprint. arXiv:1701.05762 (2017)
  30. 30.
    Girault, V., Raviart, P.-A.: Finite Element Methods for Navier–Stokes Equations: Theory and Algorithms, vol. 5. Springer Science & Business Media, Berlin (2012)zbMATHGoogle Scholar
  31. 31.
    Hecht, F.: New development in freefem++. J. Numer. Math. 20(3–4), 251–266 (2012)MathSciNetzbMATHGoogle Scholar
  32. 32.
    Henrot, A., Pierre, M.: Variation et optimisation de formes: une analyse géométrique, vol. 48. Springer Science & Business Media, Berlin (2006)zbMATHGoogle Scholar
  33. 33.
    Hiptmair, R., Paganini, A., Sargheini, S.: Comparison of approximate shape gradients. BIT Numer. Math. 55(2), 459–485 (2015)MathSciNetzbMATHGoogle Scholar
  34. 34.
    Jameson, A.: Aerodynamic design via control theory. In: Recent Advances in Computational Fluid Dynamics (Princeton, NJ, 1988), Lecture Notes in Engineering, vol. 43, pp. 377–401. Springer, Berlin (1989)Google Scholar
  35. 35.
    Kimmel, R., Sethian, J.A.: Computing geodesic paths on manifolds. Proc. Natl. Acad. Sci. 95(15), 8431–8435 (1998)MathSciNetzbMATHGoogle Scholar
  36. 36.
    Lions, J.-L., Magenes, E.: Non-Homogenous Boundary Value Problems and Applications, vol. 1, p. 01. Springer, New York (1972)Google Scholar
  37. 37.
    Marck, G., Privat, Y.: On some shape and topology optimization problems in conductive and convective heat transfers. In: Papadrakakis, M., Karlaftis, M.G., Lagaros, N.D. (eds.) OPTI 2014, An International Conference on Engineering and Applied Sciences Optimization, pp. 1640–1657, June (2014)Google Scholar
  38. 38.
    Marck, G., Nemer, M., Harion, J.-L.: Topology optimization of heat and mass transfer problems: laminar flow. Numer. Heat Transf. Part B Fundam. 63(6), 508–539 (2013)zbMATHGoogle Scholar
  39. 39.
    Mohammadi, B., Pironneau, O.: Applied Shape Optimization for Fluids. Numerical Mathematics and Scientific Computation, 2nd edn. Oxford University Press, Oxford (2010)Google Scholar
  40. 40.
    Murat, F., Simon, J.: Sur le contrôle par un domaine géométrique, rapport la 189, univ. Paris VI (1976)Google Scholar
  41. 41.
    Osher, S.J., Santosa, F.: Level set methods for optimization problems involving geometry and constraints: I. Frequencies of a two-density inhomogeneous drum. J. Comput. Phys. 171(1), 272–288 (2001)MathSciNetzbMATHGoogle Scholar
  42. 42.
    Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton–Jacobi formulations. J. Comput. Phys. 79(1), 12–49 (1988)MathSciNetzbMATHGoogle Scholar
  43. 43.
    Pantz, O.: Sensibilité de l’équation de la chaleur aux sauts de conductivité. C. R. Math. 341(5), 333–337 (2005)MathSciNetzbMATHGoogle Scholar
  44. 44.
    Papazoglou, P.: Topology optimization of heat exchangers. Master’s thesis, TU Delft (2015)Google Scholar
  45. 45.
    Pironneau, O.: On optimum profiles in Stokes flow. J. Fluid Mech. 59(1), 117–128 (1973)MathSciNetzbMATHGoogle Scholar
  46. 46.
    Pironneau, O.: Optimal Shape Design for Elliptic Systems. Springer Science & Business Media, Berlin (2012)zbMATHGoogle Scholar
  47. 47.
    Plotnikov, P., Sokołowski, J.: Compressible Navier–Stokes Equations: Theory and Shape Optimization, vol. 73. Springer Science & Business Media, Berlin (2012)zbMATHGoogle Scholar
  48. 48.
    Richter, T.: Fluid–Structure Interactions: Models, Analysis and Finite Elements. Lecture Notes in Computational Science and Engineering, vol. 118. Springer, Cham (2017)Google Scholar
  49. 49.
    Sethian, J.A.: A fast marching level set method for monotonically advancing fronts. Proc. Natl. Acad. Sci. 93(4), 1591–1595 (1996)MathSciNetzbMATHGoogle Scholar
  50. 50.
    Sethian, J.A., Wiegmann, A.: Structural boundary design via level set and immersed interface methods. J. Comput. Phys. 163(2), 489–528 (2000)MathSciNetzbMATHGoogle Scholar
  51. 51.
    Sokolowski, J., Zolésio, J.-P.: Introduction to Shape Optimization: Shape Sensitivity Analysis. Springer Series in Computational Mathematics, vol. 16. Springer, Berlin (1992)zbMATHGoogle Scholar
  52. 52.
    Strain, J.: Semi-Lagrangian methods for level set equations. J. Comput. Phys. 151(2), 498–533 (1999)MathSciNetzbMATHGoogle Scholar
  53. 53.
    Takezawa, A., Nishiwaki, S., Kitamura, M.: Shape and topology optimization based on the phase field method and sensitivity analysis. J. Comput. Phys. 229(7), 2697–2718 (2010)MathSciNetzbMATHGoogle Scholar
  54. 54.
    Tartar, L.: An Introduction to Sobolev Spaces and Interpolation Spaces, vol. 3. Springer Science & Business Media, Berlin (2007)zbMATHGoogle Scholar
  55. 55.
    Temam, R.: Navier Stokes Equations: Theory and Numerical Analysis, vol. 45. North-Holland Publishing Company, Amsterdam (1977)zbMATHGoogle Scholar
  56. 56.
    Wang, M.Y., Wang, X., Guo, D.: A level set method for structural topology optimization. Comput. Methods Appl. Mech. Eng. 192(1), 227–246 (2003)MathSciNetzbMATHGoogle Scholar
  57. 57.
    Welker, K.: Suitable spaces for shape optimization. arXiv preprint. arXiv:1702.07579 (2017)
  58. 58.
    Xia, Q., Wang, M.Y.: Topology optimization of thermoelastic structures using level set method. Comput. Mech. 42(6), 837–857 (2008)zbMATHGoogle Scholar
  59. 59.
    Yoon, G.H.: Topological layout design of electro-fluid-thermal-compliant actuator. Comput. Methods Appl. Mech. Eng. 209–212, 28–44 (2012)Google Scholar
  60. 60.
    Yoon, G.H.: Stress-based topology optimization method for steady-state fluid-structure interaction problems. Comput Methods Appl. Mech. Eng. 278, 499–523 (2014)MathSciNetzbMATHGoogle Scholar
  61. 61.
    Zhao, H.: A fast sweeping method for eikonal equations. Math. Comput. 74(250), 603–627 (2005)MathSciNetzbMATHGoogle Scholar
  62. 62.
    Zhao, X., Zhou, M., Sigmund, O., Andreasen, C.: A “poor man’s approach” to topology optimization of cooling channels based on a darcy flow model. Int. J. Heat Mass Transf. 116, 1108–1123 (2018)Google Scholar

Copyright information

© Sociedad Española de Matemática Aplicada 2019

Authors and Affiliations

  • F. Feppon
    • 1
    • 2
  • G. Allaire
    • 1
  • F. Bordeu
    • 2
  • J. Cortial
    • 2
  • C. Dapogny
    • 3
  1. 1.Centre de Mathématiques Appliquées École polytechniquePalaiseauFrance
  2. 2.Safran TechMagny-les-HameauxFrance
  3. 3.Laboratoire Jean KuntzmannUniversité Joseph FourierGrenobleFrance

Personalised recommendations