Computational Methods and Function Theory

, Volume 19, Issue 4, pp 717–728 | Cite as

Zero Distribution on Differential-Difference Polynomials of Exponential Type Functions

  • Kai LiuEmail author
  • Linkui Gao
  • Xinling Liu


Exponential type functions are important subclasses of transcendental entire functions. In this paper, we will use some results given by Steinmetz (Manuscr Math 26:155–167, 1978) to consider the zeros of difference or differential-difference polynomials of exponential polynomials. In addition, we also consider the zeros of difference polynomials of exponential type functions with infinite order.


Exponential polynomials Differential-difference polynomials Value distribution 

Mathematics Subject Classification

30D35 39A05 



The authors would like to thank the referee for his/her helpful suggestions and comments.


  1. 1.
    Chen, Z.X.: Complex Differences and Difference Equations, Mathematics Monograph Series, vol. 29. Science Press, Beijing (2014)Google Scholar
  2. 2.
    Chiang, Y.M., Feng, S.J.: On the Nevanlinna characteristic \(f(z+\eta )\) and difference equations in the complex plane. Ramanujan. J. 16, 105–129 (2008)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Halburd, R.G., Korhonen, R.J.: Difference analogue of the lemma on the logarithmic derivative with applications to difference equations. J. Math. Anal. Appl. 314, 477–487 (2006)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Halburd, R.G., Korhonen, R.J., Tohge, K.: Holomorphic curves with shift-invariant hyperplane preimages. Trans. Am. Math. Soc. 366, 4267–4298 (2014)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Hayman, W.K.: Meromorphic Functions. Clarendon Press, Oxford (1964)zbMATHGoogle Scholar
  6. 6.
    Hayman, W.K.: Picard values of meromorphic functions and their derivatives. Ann. Math. 70, 9–42 (1959)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Laine, I.: Nevanlinna Theory and Complex Differential Equations. Walter de Gruyter, Berlin, New York (1993)CrossRefGoogle Scholar
  8. 8.
    Laine, I., Yang, C.C.: Value distribution of difference polynomials. Proc. Jpn. Acad. Ser. A. 83, 148–151 (2007)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Laine, I.: Zero distribution of some shift polynomials. J. Math. Anal. Appl. 469, 808–826 (2019)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Latreuch, Z., Belaïdi, B.: On Picard value problem of some difference polynomials. Arab. J. Math. 7(1), 27–37 (2018)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Liu, K., Yang, L.Z.: Value distribution of the difference operator. Arch. Math. 92, 270–278 (2009)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Liu, K., Liu, X.L., Yang, L.Z.: The zero distribution and uniqueness of difference-differential polynomials. Ann. Polon. Math. 109, 137–152 (2013)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Liu, X.L., Liu, K., Zhou, L.C.: The zeros of complex differential-difference polynomials. Adv. Differ. Equations 2014, 157 (2014)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Lü, W.R., Liu, N.N., Yang, C.C., Zhou, C.P.: Notes on value distributions of \(ff^{(k)}-b\). Kodai Math. J. 39(3), 500–509 (2016)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Ritt, J.F.: On the zeros of exponential polynomials. Tran. Am. Math. Soc. 31, 680–686 (1929)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Song, C.J., Liu, K., Ma, L.: The zeros on complex differential-difference polynomials of certain types. Adv. Differ. Equations 2018, 262 (2018)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Steinmetz, N.: Wertverteilung von exponential polynomen. Manuscr. Math. 26, 155–167 (1978)CrossRefGoogle Scholar
  18. 18.
    Yang, C.C., Yi, H.X.: Uniqueness Theory of Meromorphic Functions. Kluwer Academic Publishers, Dordrecht (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of MathematicsNanchang UniversityNanchangPeople’s Republic of China
  2. 2.Department of Physics and MathematicsUniversity of Eastern FinlandJoensuuFinland

Personalised recommendations