Advertisement

The algebraic and lattice structures of type-2 intuitionistic fuzzy sets

  • Zia Bashir
  • M. G. Abbas Malik
  • Faisal Afridi
  • Tabasam RashidEmail author
Article
  • 57 Downloads

Abstract

Type-2 intuitionistic fuzzy sets are proposed as functions from non empty set U to \({\mathbf {T}}^{\mathbf {T}}\) where \({\mathbf {T}}=\{(\mu ,\nu ):\mu +\nu \le 1,\mu \ge 0,\nu \ge 0\}\) and \({\mathbf {T}}^{\mathbf {T}}\) is the set of all mappings from \({\mathbf {T}}\) to \({\mathbf {T}}\). The members of \({\mathbf {T}}^{\mathbf {T}}\) are called intuitionistic fuzzy values (IFV). In this paper, we develop a mathematical framework for IFVs by defining a set of generalized operations on \({\mathbf {T}}^{\mathbf {T}}\) and proved it to be an algebra. The other important properties like convexity, normality of IFVs and many important subalgebras are also explored and studied. Furthermore, two partial orders based on generalized operations are defined, which enable us to study the lattices in \({\mathbf {T}}^{\mathbf {T}}\).

Keywords

Type-2 fuzzy sets Type-2 intuitionistic fuzzy sets Intuitionistic fuzzy values Algebra 

Mathematics Subject Classification

03B52 47S40 46S40 

Notes

Acknowledgements

The authors would like to thank the editors and the anonymous reviewers, whose insightful comments and constructive suggestions helped us to significantly improve the quality of this paper.

Funding

This study is not funded.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Consent

It is submitted with the consent of all the authors.

References

  1. Abdullah L, Adawiyah CWR, Kamal CW (2018) A decision making method based on interval type-2 fuzzy sets: an approach for ambulance location preference. Appl Comput Inf 14:65–72Google Scholar
  2. Afshar MR, Alipouri Y, Sebt MH, Chan WT (2017) A type-2 fuzzy set model for contractor prequalification. Autom Constr 84:356–366CrossRefGoogle Scholar
  3. Aggarwala A, Chandrab S, Mehrab A (2014) Solving matrix games with I-fuzzy payoffs: pareto-optimal security strategies approach. Fuzzy Inf Eng 6(2):167–192MathSciNetCrossRefGoogle Scholar
  4. An J, Li D (2019) A linear programming approach to solve constrained bi-matrix games with intuitionistic fuzzy payoffs. Int J Fuzzy Syst 21(3):908–915MathSciNetCrossRefGoogle Scholar
  5. Atanassov K (1986) Intuitionistic fuzzy sets. Fuzzy Sets Syst 20:87–96CrossRefzbMATHGoogle Scholar
  6. Bashir Z, Watrobski J, Rashid T, Salabun W, Ali J (2017) Intuitionistic-fuzzy goals in zero-sum multi criteria matrix games. Symmetry 9:158MathSciNetzbMATHCrossRefGoogle Scholar
  7. Bashir Z, Rashid T, Watrobski J, Salabun W, Malik A (2018) Hesitant probabilistic multiplicative preference relations in group decision making. Appl Sci 8:398CrossRefGoogle Scholar
  8. Chao L, Tan C, Wang X, Zheng Y (2019) An evolving recurrent interval type-2 intuitionistic fuzzy neural network for online learning and time series prediction. Appl Soft Comput J 78:150–163CrossRefGoogle Scholar
  9. Chen TY (2014) Interval-valued intuitionistic fuzzy QUALIFLEX method with a likelihood-based comparison approach for multiple criteria decision analysis. Inf Sci 261:149–169MathSciNetzbMATHCrossRefGoogle Scholar
  10. Coupland S, John R (2007) Geometric type-1 and type-2 fuzzy logic systems. IEEE Trans Fuzzy Syst 15(1):3–15zbMATHCrossRefGoogle Scholar
  11. Coupland S, John R (2008) A fast geometric method for defuzzification of type-2 fuzzy sets. IEEE Trans Fuzzy Syst 16(4):929–941CrossRefGoogle Scholar
  12. Coupland S, Gongora M, John R, Wills K (2006) A comparative study of fuzzy logic controllers for autonomous robots. In: Proc. IPMU, Paris, France, July, pp 1332–1339Google Scholar
  13. Dong Y, Xu H, Fan S (2019) Memory-based stag hunt game on regular lattices. Physica A 519:247–255MathSciNetCrossRefGoogle Scholar
  14. Eyoh I, John R, Maere GD, Kayacan E (2018) Hybrid learning for interval type-2 intuitionistic fuzzy logic systems as applied to identification and prediction problems. IEEE Trans Fuzzy Syst 26(5):2672–2685CrossRefGoogle Scholar
  15. Feng Z, Hanqiang L, Jiulun F, Wen CC, Rong L, Na L (2018) Intuitionistic fuzzy set approach to multi-objective evolutionary clustering with multiple spatial information for image segmentation. Neurocomputing 312:296–309CrossRefGoogle Scholar
  16. Goguen JA (1967) L-fuzzy sets. J Math Anal Appl 18(1):145–174MathSciNetzbMATHCrossRefGoogle Scholar
  17. Hua J, Pan L, Yang Y, Chen H (2019) A group medical diagnosis model based on intuitionistic fuzzy soft sets. Appl Soft Comput 77:453–466CrossRefGoogle Scholar
  18. Kumar D, Verma H, Mehra A, Agrawal RK (2019) A modified intuitionistic fuzzy c-means clustering approach to segment human brain MRI image. Multimed Tools Appl 78(10):12663–12687CrossRefGoogle Scholar
  19. Linda O, Manic M (2012) General type-2 fuzzy C-means algorithm for uncertain fuzzy clustering. IEEE Trans Fuzzy Syst 20(5):883–897CrossRefGoogle Scholar
  20. Liu F (2008) An efficient centroid type-reduction strategy for general type-2 fuzzy logic system. Inf Sci 178:2224–2236MathSciNetCrossRefGoogle Scholar
  21. Lu J, Li D, Zhai Y, Li H, Bai H (2016) A model for type-2 fuzzy rough sets. Inf Sci 328:359–377zbMATHCrossRefGoogle Scholar
  22. Luo M, Zhao R (2018) A distance measure between intuitionistic fuzzy sets and its application in medical diagnosis. Artif Intell Med 89:34–39CrossRefGoogle Scholar
  23. Mendel J, John R (2002) Type-2 fuzzy sets made simple. IEEE Trans Fuzzy Syst 10(2):117–127CrossRefGoogle Scholar
  24. Mendel LM, John RI, Liu F (2006) Interval type-2 fuzzy logic systems made simple. IEEE Trans Fuzzy Syst 14(6):808–821CrossRefGoogle Scholar
  25. Mendel J, Liu F, Zhai D (2009) \(\alpha \)-Plane representation for type-2 fuzzy sets: theory and applications. IEEE Trans Fuzzy Syst 17(5):1189–1207CrossRefGoogle Scholar
  26. Mizumoto M, Tanaka K (1976) Some properties of fuzzy sets of type-2. Inf Control 31:312–340MathSciNetzbMATHCrossRefGoogle Scholar
  27. Mizumoto M, Tanaka K (1981) Fuzzy sets of type-2 under algebraic product and algebraic sum. Fuzzy Sets Syst 5:277–290MathSciNetzbMATHCrossRefGoogle Scholar
  28. Ngan RT, Ali M, Son LH (2018) \(\delta \)-equality of intuitionistic fuzzy sets: a new proximity measure and applications in medical diagnosis. Appl Intell 48(2):499–525CrossRefGoogle Scholar
  29. Peng H, Wang X, Wang T, Wang J (2019) Multi-criteria game model based on the pairwise comparisons of strategies with Z-numbers. Appl Soft Comput 74:451–465CrossRefGoogle Scholar
  30. Roy SK, Bhaumik A (2018) Intelligent water management: a triangular type-2 intuitionistic fuzzy matrix games approach. Water Resour Manag 32:949–968CrossRefGoogle Scholar
  31. Shu F, Liu X, Fang K, Chen H (2018) Memory-based snowdrift game on a square lattice. Phys A Stat Mech Appl 496:15–26MathSciNetCrossRefGoogle Scholar
  32. Singh S, Garg H (2017) Distance measures between type-2 intuitionistic fuzzy sets and their application to multicriteria decision-making process. Appl Intell 46(4):788–799CrossRefGoogle Scholar
  33. Takáč Z (2013) Type-2 aggregation operators. In: Proc. of EUSFLAT 2013, Milán, Italy, pp 165–170Google Scholar
  34. Takáč Z (2014) Aggregation of fuzzy truth values. Inf Sci 271:1–13MathSciNetzbMATHCrossRefGoogle Scholar
  35. Tan C (2011) A multi-criteria interval-valued intuitionistic fuzzy group decision making with Choquet integral-based TOPSIS. Expert Syst Appl 38:3023–3033CrossRefGoogle Scholar
  36. Torra V (2010) Hesitant fuzzy sets. Int J Intell Syst 25(6):529–539zbMATHGoogle Scholar
  37. Torres-Blanc C, Cubillo S, Hernández P (2017) Aggregation operators on type-2 fuzzy sets. Fuzzy Sets Syst 324:74–90MathSciNetzbMATHCrossRefGoogle Scholar
  38. Walker C, Walker E (2005) The algebra of fuzzy truth values. Fuzzy Sets Syst 149:309–347MathSciNetzbMATHCrossRefGoogle Scholar
  39. Wan S, Dong J (2014) A possibility degree method for interval-valued intuitionistic fuzzy multi-attribute group decision making. J Comput Syst Sci 80:237–256MathSciNetzbMATHCrossRefGoogle Scholar
  40. Xu Z, Zhou W (2017) Consensus building with a group of decision makers under the hesitant probabilistic fuzzy environment. Fuzzy Optim Decis Mak 16(4):481–503MathSciNetzbMATHCrossRefGoogle Scholar
  41. Zadeh L (1965) Fuzzy sets. Inf Control 8(3):338–353zbMATHCrossRefGoogle Scholar
  42. Zadeh L (1975) The concept of a linguistic variable and its application to approximate reasoning-I. Inf Sci 8:199–249MathSciNetzbMATHCrossRefGoogle Scholar
  43. Zhao T, Xiao J (2012) Type-2 intuitionistic fuzzy sets. Kongzhi Lilun Yu Yingyong Control Theory Appl 29:1215–1222Google Scholar
  44. Zhao F, Chen Y, Liu H, Fan J (2019) Alternate PSO-based adaptive interval type-2 intuitionistic fuzzy C-means clustering algorithm for color image segmentation. IEEE Access 7:64028–64039CrossRefGoogle Scholar

Copyright information

© SBMAC - Sociedade Brasileira de Matemática Aplicada e Computacional 2019

Authors and Affiliations

  • Zia Bashir
    • 1
  • M. G. Abbas Malik
    • 2
  • Faisal Afridi
    • 1
  • Tabasam Rashid
    • 3
    Email author
  1. 1.Department of MathematicsQuaid-i-Azam UniversityIslamabadPakistan
  2. 2.Universal College of LearningPalmerston NorthNew Zealand
  3. 3.Department of MathematicsUniversity of Management and TechnologyLahorePakistan

Personalised recommendations