Advertisement

New numerical studies for Darcy’s problem coupled with the heat equation

  • Dayana Dib
  • Séréna DibEmail author
  • Toni Sayah
Article
  • 39 Downloads

Abstract

In this article, we consider the heat equation coupled with Darcy’s law by a nonlinear viscosity depending on the temperature. We recall two numerical schemes and introduce a new non-stabilized one, we show the existence and uniqueness of the solutions and we establish an a priori error estimates using the Brezzi–Rappaz–Raviart theorem. Numerical investigations are preformed and showed.

Keywords

Darcy’s equations Heat equation Brezzi–Rappaz–Raviart theorem Finite element method A priori error estimates 

Mathematics Subject Classification

35K05 35B45 74S05 76M10 

Notes

References

  1. Abboud H, Girault V, Sayah T (2009) A second order accuracy in time for a full discretized time-dependent Navier–Stockes equations by a two-grid scheme. Numer Math 114:189–231MathSciNetCrossRefGoogle Scholar
  2. Adams JA (1975) Sobolev spaces. Academic Press, New YorkzbMATHGoogle Scholar
  3. Amrouche C, Rodríguez-Bellido MA (2018) On the regularity for the Laplace equation and the Stokes system. Monografías de la Real Academia de Ciencias de Zaragoza, p 38Google Scholar
  4. Beatrice M, Rivière M, Walkington NJ (2011) Convergence of a discontinuous Galerkin method for the miscible displacement equation under low regularity. SIAM J Numer Anal 49(3):1085–1110MathSciNetCrossRefGoogle Scholar
  5. Bernardi C, Dib S, Girault V, Hecht F, Murat F, Sayah T (2018) Finite element methods for Darcy’s problem coupled with the heat equation. Numer Math 139(2):315–348MathSciNetCrossRefGoogle Scholar
  6. Bernardi C, Girault V (1998) A local regularisation operation for triangular and quadrilateral finite elements. SIAM J Numer Anal 35:1893–1916MathSciNetCrossRefGoogle Scholar
  7. Bernardi C, Maday Y, Rapetti F (2004) Discrt́isations variationnelles de problèmes aux limites elliptiques. Mathematics and applications, vol 45. Springer, PariszbMATHGoogle Scholar
  8. Bernardi C, Métivet B, Pernaud-Thomas B (1995) Couplage des équations de Navier–Stokes et de la chaleur: le modèle et son approximation par éléments finis. RAIRO Modél Math Anal Numér 29(7):871–921MathSciNetCrossRefGoogle Scholar
  9. Bernardi C, Maarouf S, Yakoubi D (2016) Spectral discretization of Darcy’s equations coupled with the heat equation. IMA J Numer Anal 36(3):1193–1216MathSciNetCrossRefGoogle Scholar
  10. Boussinesq J (1903) Théorie analytique de la chaleur. Volume 2 of lecture notes in mathematics. Gauthier-Villars, ParisGoogle Scholar
  11. Brezzi F, Rappaz J, Raviart PA (1980) Finite dimensionnal approximation of non linear problems, Part I: Branches of nonsingular solutions. Numer Math 36:1–25MathSciNetCrossRefGoogle Scholar
  12. Ciarlet PG (1991) Basic error estimates for elleptic problems. Handbook of numerical analysis, finite element methods (Part I), II. North-Holland, pp 17–343Google Scholar
  13. Chen Z, Ewing R (1999) Mathematical analysis for reservoir models. SIAM J Numer Anal 30:431–453MathSciNetCrossRefGoogle Scholar
  14. Clément P (1975) Approximation by finite element functions using local regularization. RAIRO Anal Numér 9:77–84MathSciNetzbMATHGoogle Scholar
  15. Deteix J, Jendoubi A, Yakoubi D (2014) A coupled prediction scheme for solving the Navier–Stokes and convection–diffusion equations. SIAM J Numer Anal 52(5):2415–2439MathSciNetCrossRefGoogle Scholar
  16. Feng X (1995) On existence and uniqueness results for a coupled system modeling miscible displacement in porous media. J Math Anal Appl 194:883–910MathSciNetCrossRefGoogle Scholar
  17. Gaultier M, Lezaun M (1989) Équations de Navier–Stokes couplées à des équations de la chaleur : résolution par une méthode de point fixe en dimension infinie. Ann Sci Math Québec 13(1):1–17MathSciNetzbMATHGoogle Scholar
  18. Girault V, Lions JL (2001) Two-grid finite-element schemes for the transient Navier–Stokes problem. M2AN Math Model Numer Anal 35(5):945–980MathSciNetCrossRefGoogle Scholar
  19. Hecht F (2012) New development in FreeFem++. J Numer Math 20:251–266MathSciNetCrossRefGoogle Scholar
  20. Hooman K, Gurgenci H (2007) Effects of temperature-dependent viscosity variation on entropy generation, heat and fluid flow through a porous-saturated duct of rectangular cross-section. ISSN Appl Math Mech 28:69–78CrossRefGoogle Scholar
  21. Jizhou L, Beatrice M, Rivière M, Walkington NJ (2015) Convergence of a high order method in time and space for the miscible displacement equations. ESAIM Math Model Numer Anal 49:953–976MathSciNetCrossRefGoogle Scholar
  22. Meyers NG (1963) An \(L^p\) estimate for the gradient of solutions of second order elliptic divergence equation. Ann Scuola Norm Sup Pisa 17:189–206MathSciNetzbMATHGoogle Scholar
  23. Necas J (1967) Les Méthodes directes en théorie des équations elliptiques. Masson, PariszbMATHGoogle Scholar
  24. Rashad AM (2014) Effects of radiation and variable viscosity on unsteady MHD flow of a rotating fluid from stretching surface in porous medium. J Egypt Math Soc 22:134–142MathSciNetCrossRefGoogle Scholar
  25. Scott LR, Zhang S (1990) Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math Comput 54:483–493MathSciNetCrossRefGoogle Scholar

Copyright information

© SBMAC - Sociedade Brasileira de Matemática Aplicada e Computacional 2019

Authors and Affiliations

  1. 1.Laboratoire de Mathétiques et Applications, Unité de recherche Mathématiques et Modélisation, Faculté des SciencesUniversité Saint-JosephBeirutLebanon

Personalised recommendations