Advertisement

A cardinal method to solve coupled nonlinear variable-order time fractional sine-Gordon equations

  • Mohammad Hossein HeydariEmail author
  • Zakieh Avazzadeh
  • Yin Yang
  • Carlo Cattani
Article
  • 21 Downloads

Abstract

In this study, a computational approach based on the shifted second-kind Chebyshev cardinal functions (CCFs) is proposed for obtaining an approximate solution of coupled variable-order time-fractional sine-Gordon equations where the variable-order fractional operators are defined in the Caputo sense. The main ideas of this approach are to expand the unknown functions in tems of the shifted second-kind CCFs and apply the collocation method such that it reduces the problem into a system of algebraic equations. To algorithmize the method, the operational matrix of variable-order fractional derivative for the shifted second-kind CCFs is derived. Meanwhile, an effective technique for simplification of nonlinear terms is offered which exploits the cardinal property of the shifted second-kind CCFs. Several numerical examples are examined to verify the practical efficiency of the proposed method. The method is privileged with the exponential rate of convergence and provides continuous solutions with respect to time and space. Moreover, it can be adapted for other types of variable-order fractional problems straightforwardly.

Keywords

Coupled nonlinear variable-order time-fractional sine-Gordon equations Chebyshev cardinal functions (CCFs) Shifted second-kind CCFs Operational matrix (OM) Collocation method 

Mathematics Subject Classification

35R11 26A33 65M70 33C47 

Notes

References

  1. Abdelkawy MA, Zaky MA, Bhrawy AH, Baleanu D (2015) Numerical simulation of time variable fractional order mobile-immobile advection-dispersion model. Romanian Rep Phys 67:773–791Google Scholar
  2. Bhrawy AH, Zaky MA (2016) Numerical algorithm for the variable-order Caputo fractional functional differential equation. Nonlinear Dyn 85(3):1815–1823.  https://doi.org/10.1007/s11071-016-2797-y MathSciNetzbMATHCrossRefGoogle Scholar
  3. Bhrawy AH, Zaky MA (2017) An improved collocation method for multi-dimensional space-time variable-order fractional Schrödinger equations. Appl Numer Math 111:197–218MathSciNetzbMATHCrossRefGoogle Scholar
  4. Bhrawy AH, Zaky MA (2016) Numerical simulation for two-dimensional variable-order fractional nonlinear cable equation. Nonlinear Dyn 80(1):101–116MathSciNetzbMATHGoogle Scholar
  5. Bhrawy AH, Zaky MA (2017) Highly accurate numerical schemes for multi-dimensional space variable-order fractional Schrödinger equations. Comput Math Appl 73(6):1100–1117MathSciNetzbMATHCrossRefGoogle Scholar
  6. Boyd JP (2000) Chebyshev and Fourier spectral methods. DOVER Publications, Inc., New YorkGoogle Scholar
  7. Braun OM, Kivshar YuS (1998) Nonlinear dynamics of the Frenkel–Kontorova model. Phys Rep 306(1–2):1–108MathSciNetCrossRefGoogle Scholar
  8. Braun OM, Kivshar YuS (1998) Nonlinear dynamics of the Frenkel–Kontorova model. Phys Rep 306:1–108MathSciNetCrossRefGoogle Scholar
  9. Braun OM, Kivshar YuS (2019) An efficient finite difference/Hermite–Galerkin spectral method for time-fractional coupled sine-Gordon equations on multidimensional unbounded domains and its application in numerical simulations of vector Solitons. Comput Phys Commun 237:110–128MathSciNetCrossRefGoogle Scholar
  10. Canuto C, Hussaini M, Quarteroni A, Zang T (1988) Spectral methods in fluid dynamics. Springer, BerlinzbMATHCrossRefGoogle Scholar
  11. Coimbra C (2003) Mechanics with variable-order differential operators. Ann Phys 12:692–703MathSciNetzbMATHCrossRefGoogle Scholar
  12. Cooper GRJ, Cowan DR (2004) Viltering using variable order vertical derivatives. Comput Geosci 30:455–459CrossRefGoogle Scholar
  13. Dabiri A, Butcher E (2018) Numerical solution of multi-order fractional differential equations with multiple delays via spectral collocation methods. Appl Math Model 56:424–448MathSciNetCrossRefGoogle Scholar
  14. Dabiri A, Butcher E (2019) Optimal observer-based feedback control for linear fractional-order systems with periodic coefficients. J Vib Control 25(7):1379–1392MathSciNetCrossRefGoogle Scholar
  15. Dabiri A, Moghaddam BP, Machado JAT (2018) Optimal variable-order fractional PID controllers for dynamical systems. J Comput Appl Math 339:40–48MathSciNetzbMATHCrossRefGoogle Scholar
  16. Dahaghin MS, Hassani H (2017) An optimization method based on the generalized polynomials for nonlinear variable-order time fractional diffusion-wave equation. Nonlinear Dyn 88(3):1587–1598MathSciNetzbMATHCrossRefGoogle Scholar
  17. Doha EH, Abdelkawy MA, Amin AZM, Lopes António M (2018) A space-time spectral approximation for solving nonlinear variable-order fractional sine and Klein–Gordon differential equations. Comput Appl Math 37:6212–6229MathSciNetzbMATHCrossRefGoogle Scholar
  18. Hassania H, Machadob JAT, Naraghirad E (2019) Generalized shifted Chebyshev polynomials for fractional optimal control problems. Commun Nonlinear Sci Numer Simul 75:50–61MathSciNetCrossRefGoogle Scholar
  19. Heydari MH (2018) A new direct method based on the Chebyshev cardinal functions for variable-order fractional optimal control problems. J Frankl Inst 355:4970–4995MathSciNetzbMATHCrossRefGoogle Scholar
  20. Heydari MH, Avazzadeh Z (2018) A new wavelet method for variable-order fractional optimal control problems. Asian J Control 20(5):1–14MathSciNetzbMATHCrossRefGoogle Scholar
  21. Heydari MH, Avazzadeh Z (2018) Legendre wavelets optimization method for variable-order fractional Poisson equation. Chaos Solitons Fractals 112:180–190MathSciNetzbMATHCrossRefGoogle Scholar
  22. Heydari MH, Avazzadeh Z (2018) An operational matrix method for solving variable-order fractional biharmonic equation. Comput Appl Math 37(4):4397–4411MathSciNetzbMATHCrossRefGoogle Scholar
  23. Heydari MH, Hooshmandasl MR, Cattani C, Hariharan G (2017) An optimization wavelet method for multi variable-order fractional differential equations. Fundam Inf 153(3–4):173–198MathSciNetzbMATHGoogle Scholar
  24. Heydari MH, Avazzadeh Z, Farzi Haromi M (2019) A wavelet approach for solving multi-term variable-order time fractional diffusion-wave equation. Appl Math Comput 341:215–228MathSciNetGoogle Scholar
  25. Heydari MH, Avazzadeh Z, Yang Yin (2019) A computational method for solving variable-order fractional nonlinear diffusion-wave equation. Appl Math Comput 352:235–248MathSciNetGoogle Scholar
  26. Hooshmandasl MR, Heydari MH, Cattani C (2016) Numerical solution of fractional sub-diffusion and time-fractional diffusion-wave equations via fractional-order Legendre functions. Eur Phys J Plus 131:268.  https://doi.org/10.1140/epjp/i2016-16268-2 CrossRefGoogle Scholar
  27. Hosseininia M, Heydari MH, Maalek Ghaini FM, Avazzadeh Z (2018) Two-dimensional Legendre wavelets for solving variable-order fractional nonlinear advection-diffusion equation with variable coefficients. Int J Nonlinear Sci Numer Simul 19(7–8):793–802MathSciNetzbMATHCrossRefGoogle Scholar
  28. Hu Y, Wang G, Rickayzen G (2013) Weak solutions to a nonlinear variational sine-Gordon equation. J Math Anal Appl 402:1–11MathSciNetCrossRefGoogle Scholar
  29. Ilati M, Dehghan M (2015) The use of radial basis functions (RBFs) collocation and rbf-qr methods for solving the coupled nonlinear sine-gordon equations. Eng Anal Bound Elem 52:99–109MathSciNetzbMATHCrossRefGoogle Scholar
  30. Khane Keshi F, Parsa Moghaddam B, Aghili A (2018) A numerical approach for solving a class of variable-order fractional functional integral equations. Comput Appl Math 37(4):4821–4834MathSciNetzbMATHCrossRefGoogle Scholar
  31. Kobelev YL, Kobelev LY, Klimontovich YL (2003) Statistical physics of dynamic systems with variable memory. Dokl Phys 48(6):285–289MathSciNetzbMATHCrossRefGoogle Scholar
  32. Machado JAT, Parsa B, Moghaddam H Behforooz (2017) An integro quadratic spline approach for a class of variable-order fractional initial value problems. Chaos Solitons Fractals 102:354–360MathSciNetzbMATHCrossRefGoogle Scholar
  33. Mohammadi F, Hassani H (2019) Numerical solution of two-dimensional variable-order fractional optimal control problem by generalized polynomial basis. J Optim Theory Appl 180(2):536–555MathSciNetzbMATHCrossRefGoogle Scholar
  34. Parsa Moghaddam B, Machado JAT (2017) Extended algorithms for approximating variable order fractional derivatives with applications. J Sci Comput 71(2):1351–1374MathSciNetzbMATHCrossRefGoogle Scholar
  35. Parsa Moghaddam B, Machado JAT (2017) Sm-algorithms for approximating the variable-order fractional derivative of high order. Fundam Inf 151(1–4):293–311MathSciNetzbMATHCrossRefGoogle Scholar
  36. Parsa Moghaddam B, Machado JAT, Babaei A (2017) A computationally efficient method for tempered fractional differential equations with application. Comput Appl Math 37(3):3657–3671MathSciNetzbMATHCrossRefGoogle Scholar
  37. Parsa Moghaddam B, Dabiri A, Machado JAT (2019) Application of variable-order fractional calculus in solid mechanics. In: Baleanu D, Lopes AM (eds) Applications in engineering, life and social sciences, part A. De Gruyter, pp 207–724.  https://doi.org/10.1515/9783110571905-011 CrossRefGoogle Scholar
  38. Podlubny I (1999) Fractional differential equations. Academic Press, San DiegozbMATHGoogle Scholar
  39. Ramirez LES, Coimbra CFM (2007) A variable order constitutive relation for viscoelasticity. Ann Phys 16:543–552MathSciNetzbMATHCrossRefGoogle Scholar
  40. Shekari Y, Tayebi A, Heydari MH (2019) A meshfree approach for solving 2D variable-order fractional nonlinear diffusion-wave equation. Comput Methods Appl Mech Eng 350:154–168MathSciNetCrossRefGoogle Scholar
  41. Sun HG, Chen W, Wei H, Chen YQ (2011) A comparative study of constant-order and variable-order fractional models in characterizing memory property of systems. Eur Phys J Spec Top 193:185–192CrossRefGoogle Scholar
  42. Sun HG, Zhang Y, Chen W, Reeves DM (2014) Use of a variable-index fractional-derivative model to capture transient dispersion in heterogeneous media. J Contam Hydrol 157:47–58CrossRefGoogle Scholar
  43. Tayebi A, Shekari Y, Heydari MH (2017) A meshless method for solving two-dimensional variable-order time fractional advection-diffusion equation. J Comput Phys 340(1):655–669MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© SBMAC - Sociedade Brasileira de Matemática Aplicada e Computacional 2019

Authors and Affiliations

  1. 1.Department of MathematicsShiraz University of TechnologyShirazIran
  2. 2.Department of Mathematical SciencesXi’an Jiaotong-Liverpool University, SuzhouJiangsuChina
  3. 3.Hunan Key Laboratory for Computation and Simulation in Science and Engineering, Key Laboratory of Intelligent Computing, Information Processing of Ministry of EducationSchool of Mathematics and Computational Science, Xiangtan UniversityXiangtanChina
  4. 4.Engineering School (DEIM)University of TusciaViterboItaly

Personalised recommendations