Advertisement

A class of modified DPSS preconditioners for generalized saddle-point linear systems

  • Zhao-Zheng LiangEmail author
  • Guo-Feng Zhang
Article
  • 57 Downloads

Abstract

In this paper, a class of new preconditioners based on matrix splitting are presented for generalized saddle-point linear systems, which improve some recently published preconditioners in view of spectral distributions and numerical performances. Moreover, we widen the scope of the new preconditioners to solve more general but rarely considered saddle-point linear systems with singular leading blocks and rank-deficient off-diagonal blocks. The new variants can result in much better convergence properties and spectrum distributions than the original existing preconditioners. Numerical experiments are given to illustrate the efficiency of the new proposed preconditioners.

Keywords

Saddle-point linear systems Matrix splitting Preconditioning Convergence analysis Spectral analysis 

Mathematics Subject Classification

65F10 65F08 65F15 65F50 

Notes

Acknowledgements

We would like to express our sincere thanks to the two unknown reviewers for their careful reading of the manuscript. Their useful comments and valuable suggestions greatly improve the quality of the paper.

References

  1. Axelsson O (2015) Unified analysis of preconditioning methods for saddle point matrices. Numer Linear Algebra Appl 22(2):233–253MathSciNetCrossRefGoogle Scholar
  2. Bai Z-Z (2012) Block alternating splitting implicit iteration methods for saddle-point problems from time-harmonic eddy current models. Numer Linear Algebra Appl 19:914–936MathSciNetCrossRefGoogle Scholar
  3. Bai Z-Z (2018a) On spectral clustering of HSS preconditioner for generalized saddle-point matrices. Linear Algebra Appl 555:285–300MathSciNetCrossRefGoogle Scholar
  4. Bai Z-Z (2018b) Regularized HSS iteration methods for stabilized saddle-point problems. IMA J Numer Anal.  https://doi.org/10.1093/imanum/dry046 CrossRefGoogle Scholar
  5. Bai Z-Z, Benzi M (2017) Regularized HSS iteration methods for saddle-point linear systems. BIT Numer Math 57(2):287–311MathSciNetCrossRefGoogle Scholar
  6. Bai Z-Z, Golub GH (2007) Accelerated Hermitian and skew-Hermitian splitting iteration methods for saddle-point problems. IMA J Numer Anal 27(1):1–23MathSciNetCrossRefGoogle Scholar
  7. Bai Z-Z, Hadjidimos A (2014) Optimization of extrapolated Cayley transform with non-Hermitian positive definite matrix. Linear Algebra Appl 463:322–339MathSciNetCrossRefGoogle Scholar
  8. Bai Z-Z, Golub GH, Ng MK (2003) Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems. SIAM J Matrix Anal Appl 24(3):603–626MathSciNetCrossRefGoogle Scholar
  9. Bai Z-Z, Golub GH, Pan J-Y (2004) Preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite linear systems. Numer Math 98(1):1–32MathSciNetCrossRefGoogle Scholar
  10. Bai Z-Z, Golub GH, Lu L-Z, Yin J-F (2005) Block triangular and skew-Hermitian splitting methods for positive-definite linear systems. SIAM J Sci Comput 26(3):844–863MathSciNetCrossRefGoogle Scholar
  11. Bai Z-Z, Ng MK, Wang Z-Q (2009) Constraint preconditioners for symmetric indefinite matrices. SIAM J Matrix Anal Appl 31(2):410–433MathSciNetCrossRefGoogle Scholar
  12. Beik FPA, Benzi M, Chaparpordi SHA (2017) On block diagonal and block triangular iterative schemes and preconditioners for stabilized saddle point problems. J Comput Appl Math 326:15–30MathSciNetCrossRefGoogle Scholar
  13. Benzi M, Golub GH (2004) A preconditioner for generalized saddle point problems. SIAM J Matrix Anal Appl 26(1):20–41MathSciNetCrossRefGoogle Scholar
  14. Benzi M, Olshanskii MA (2006) An augmented Lagrangian-based approach to the Ossen problem. SIAM J Sci Comput 28:2095–2113MathSciNetCrossRefGoogle Scholar
  15. Benzi M, Simoncini V (2006) On the eigenvalues of a class of saddle point matrices. Numer Math 103(2):173–196MathSciNetCrossRefGoogle Scholar
  16. Benzi M, Wang Z (2011) Analysis of augmented Lagrangian-based preconditioners for the steady incompressible Navier–Stokes equations. SIAM J Sci Comput 33:2761–2784MathSciNetCrossRefGoogle Scholar
  17. Benzi M, Golub GH, Liesen J (2005) Numerical solution of saddle point problems. Acta Numer 14:1–137MathSciNetCrossRefGoogle Scholar
  18. Benzi M, Olshanskii MA, Wang Z (2011) Modified augmented Lagrangian preconditioners for the incompressible Navier–Stokes equations. Int J Numer Methods Fluids 66:486–508MathSciNetCrossRefGoogle Scholar
  19. Cao Y, Dong J-L, Wang Y-M (2015) A relaxed deteriorated PSS preconditioner for nonsymmetric saddle point problems from the steady Navier–Stokes equation. J Comput Appl Math 273:41–60MathSciNetCrossRefGoogle Scholar
  20. Chaparpordi SHA, Beik FPA, Salkuyeh DK (2018) Block triangular preconditioners for stabilized saddle point problems with nonsymmetric (1, 1)-block. Comput Math Appl 76:1544–1553MathSciNetCrossRefGoogle Scholar
  21. Dollar HS (2007) Constraint-style preconditioners for regularized saddle point problems. SIAM J Matrix Anal Appl 29(2):672–684MathSciNetCrossRefGoogle Scholar
  22. Elman HC (1999) Preconditioning for the steady-state Navier–Stokes equations with low viscosity. SIAM J Sci Comput 20(4):1299–1316MathSciNetCrossRefGoogle Scholar
  23. Elman HC, Ramage A, Silvester DJ (2007) Algorithm 866: IFISS, a Matlab toolbox for modelling incompressible flow. ACM Trans Math Softw 33(2):14CrossRefGoogle Scholar
  24. Golub GH, Greif C (2003) On solving block-structured indefinite linear systems. SIAM J Sci Comput 24:2076–2092MathSciNetCrossRefGoogle Scholar
  25. Hezari D, Edalatpour V (2019) On the generalized deteriorated positive semi-definite and skew-Hermitian splitting preconditioner. J Comput Math 37:18–32MathSciNetCrossRefGoogle Scholar
  26. Huang T-Z, Wu S-L, Li C-X (2009) The spectral properties of the Hermitian and skew-Hermitian splitting preconditioner for generalized saddle point problems. J Comput Appl Math 229(1):37–46MathSciNetCrossRefGoogle Scholar
  27. Keller C, Gould NI, Wathen AJ (2000) Constraint preconditioning for indefinite linear systems. SIAM J Matrix Anal Appl 21(4):1300–1317MathSciNetCrossRefGoogle Scholar
  28. Klawonn A (1998) Block-triangular preconditioners for saddle point problems with a penalty term. SIAM J Sci Comput 19(1):172–184MathSciNetCrossRefGoogle Scholar
  29. Liang Z-Z, Zhang G-F (2016) Two new variants of the HSS preconditioner for regularized saddle point problems. Comput Math Appl 72:603–619MathSciNetCrossRefGoogle Scholar
  30. Liang Z-Z, Zhang G-F (2018) Variants of the deteriorated PSS preconditioner for saddle point problems. Comput Math Appl 75:3024–3046MathSciNetCrossRefGoogle Scholar
  31. Murphy MF, Golub GH, Wathen AJ (2000) A note on preconditioning for indefinite linear systems. SIAM J Sci Comput 21(6):1969–1972MathSciNetCrossRefGoogle Scholar
  32. Notay Y (2014) A new analysis of block preconditioners for saddle point problems. SIAM J Matrix Anal Appl 35(1):143–173MathSciNetCrossRefGoogle Scholar
  33. Pan J-Y, Ng MK, Bai Z-Z (2006) New preconditioners for saddle point problems. Appl Math Comput 172(2):762–771MathSciNetzbMATHGoogle Scholar
  34. Rehman M, Vuik C, Segal G (2009) SIMPLE-type preconditioners for the Oseen problem. Int J Numer Methods Fluids 61:432–452MathSciNetCrossRefGoogle Scholar
  35. Rozlnoník M, Simoncini V (2002) Krylov subspace methods for saddle point problems with indefinite preconditioning. SIAM J Matrix Anal Appl 24(2):368–391MathSciNetCrossRefGoogle Scholar
  36. Saad Y (2003) Iterative methods for sparse linear systems. SIAM, PhiladelphiaCrossRefGoogle Scholar
  37. Shen Q-Q, Cao Y, Wang L (2017) Two improvements of the deteriorated PSS preconditioner for generalized saddle point problems. Numer Algorithms 75(1):33–54MathSciNetCrossRefGoogle Scholar
  38. Shen S-Q (2014) A note on PSS preconditioners for generalized saddle point problems. Appl Math Comput 237:723–729MathSciNetzbMATHGoogle Scholar
  39. Shen S-Q, Huang T-Z, Yu J (2010) Eigenvalue estimates for preconditioned nonsymmetric saddle point matrices. SIAM J Matrix Anal Appl 31(5):2453–2476MathSciNetCrossRefGoogle Scholar
  40. Simoncin V, Benzi M (2004) Specrtal properities of the Hermitian and skew-Hermitian splitting preconditioner for saddle point problems. SIAM J Matrix Anal Appl 26(2):377–389MathSciNetCrossRefGoogle Scholar
  41. Simoncini V (2004) Block triangular preconditioners for symmetric saddle-point problems. Appl Numer Math 49(1):63–80MathSciNetCrossRefGoogle Scholar
  42. Wathen AJ (2015) Preconditioning. Acta Numer 24:329–376MathSciNetCrossRefGoogle Scholar

Copyright information

© SBMAC - Sociedade Brasileira de Matemática Aplicada e Computacional 2019

Authors and Affiliations

  1. 1.School of Mathematics and StatisticsLanzhou UniversityLanzhouPeople’s Republic of China

Personalised recommendations