Computational and Applied Mathematics

, Volume 37, Supplement 1, pp 202–219 | Cite as

Planar powered Swing-By maneuvers to brake a spacecraft

  • Alessandra F. S. FerreiraEmail author
  • Antônio F. B. A. Prado
  • Othon C. Winter


The Swing-By maneuver is a technique used in many space mission to modify the trajectory of a spacecraft. The most usual goal is to increase the energy of the spacecraft, but it is also possible to reduce this energy. An important application is to break a spacecraft coming to the Earth using a Swing-By with the moon, which is the example used in the present paper. Other possibilities also exist, such as reducing the velocity of a spacecraft going to the planets Mercury or Venus. The goal is to help a possible capture by the planet, or at least to provide a passage with smaller velocities to allow better observations during the passage. Therefore, the goal of the present paper is to study the energy loss that a spacecraft may have during a powered Swing-By maneuver, which is a maneuver that combines a close approach by a celestial body with the application of an impulsive maneuver. The behavior of the energy variation is analyzed as a function of the parameters related to the pure gravity maneuver: periapsis radius, angle of approach and approach velocity; and the parameters related to the impulsive maneuver: the location of application of the impulse and its direction and magnitude. The maneuver is performed in a system composed by two bodies, such as the Earth–moon system, around the secondary body, and the energy is measured with respect to the primary body of the system. This problem is solved by developing a mathematical algorithm that guides larger efforts in terms of computer simulations. The results show maps of conditions made from the numerical simulations for different points of application and direction of the impulse, where the maneuver is advantageous and how much more energy can be removed from the spacecraft.


Powered Swing-By Close approach Impulsive maneuvers Spacecraft trajectory Energy decrease 

Mathematics Subject Classification

70Fxx 70F07 70F15 



The authors wish to express their appreciation for the support provided by the National Council for the Improvement of Higher Education (CAPES), the National Institute for Space Research (INPE), the Grants # 406841/2016-0 and 301338/2016-7 from the National Council for Scientific and Technological Development (CNPq), and the Grants # 2011/08171-3, 2016/14665-2, from Sao Paulo Research Foundation (FAPESP).


  1. Araujo RAN, Prado AFBA, Winter OC, Vieira Martins R (2008) Sphere of influence and gravitational capture radius: a dynamical approach. Mon Not R Astron Soc 391:675CrossRefGoogle Scholar
  2. Araujo RAN, Winter OC, Prado AFBA, Sukhanov AA (2012) Stability regions around the components of the triple system 2001SN263. Mon Not R Astron Soc 423:3058–3073CrossRefGoogle Scholar
  3. Bolton SJ, Hansen CJ, Matson DL, Spilker LJ, Lebreton JP (2004) Cassini/Huygens flyby of the Jovian system. J Geophys Res 109:A09S01. doi: 10.1029/2004JA010742
  4. Broucke RA (1988) The celestial mechanics of gravity assist. AIAA/AAS Astrodynamics Conference, Minneapolis, MN, AIAA paper 88-4220Google Scholar
  5. Byrnes DV, D’amario LA (1982) A combined Halley flyby Galileo mission. AIAA/AAS Astrodynamics Conference, San Diego, CA, AIAA paper 82-1462Google Scholar
  6. Casalino L, Colasurdo G, Pasttrone D (1999b) Optimal low-thrust scape trajectories using gravity assist. J Guid Control Dyn 22(5):637–642CrossRefGoogle Scholar
  7. Casalino L, Colasurdo G, Pastrone D (1999a) Simple strategy for powered Swing-By. J Guid Control Dyn 22(1):156–159CrossRefGoogle Scholar
  8. da Silva Ferreira AF, Prado AFBA, Winter OC (2015) A numerical study of powered Swing-Bys around the Moon. Adv Space Res 56(2):252–272. doi: 10.1016/j.asr.2015.04.016 CrossRefGoogle Scholar
  9. D’Amario LA, Byrnes DV, Stanford RH (1981) A new method for optimizing multiple-flyby trajectories. J Guid Control Dyn 4:591–596CrossRefGoogle Scholar
  10. D’Amario LA, Byrnes DV, Stanford RH (1982) Interplanetary trajectory optimization with application to Galileo. J Guid Control Dyn 5:465–471CrossRefGoogle Scholar
  11. Dunham D, Davis S (1985) Optimization of a multiple Lunar-Swing by trajectory sequence. J Astronaut Sci 33(3):275–288Google Scholar
  12. Dunne JA, Burgess E (1978) The voyage of Mariner 10. National Aeronautics and Space Administration SP 424Google Scholar
  13. Ferreira AF, Prado AFBA, Winter OC (2017) Santos DPS Effects of the eccentricity of the primaries in a powered Swing-By maneuver. Adv Space Res. doi: 10.1016/j.asr.2017.01.033
  14. Ferreira AF, Prado AFBA, Winter OC (2017b) A numerical mapping of energy gains in a powered Swing-By maneuver. Nonlinear Dyn. doi: 10.1007/s11071-017-3485-2
  15. Flandro G (1966) Fast reconnaissance missions to the outer solar system utilizing energy derived from the gravitational field of Jupiter. Astronaut Acta 12(4)Google Scholar
  16. Gomes VM, Formiga J, de Moraes RV (2013) Studying close approaches for a cloud of particles considering atmospheric drag. Math Probl EngGoogle Scholar
  17. Gomes VM, Prado AFBA (2008) Swing-By maneuvers for a cloud of particles with planets of the solar system. WSEAS Trans Appl Theor Mech 3(11):869–878Google Scholar
  18. Gomes VM, Prado AFBA, Golebiewska J (2013) Dynamics of space particles and spacecrafts passing by the atmosphere of the earth. Sci World J 2013, Article number 489645Google Scholar
  19. Gomes VM, Pineros JOM, Prado AFBA, Golebiewska J (2015) Atmospheric close approaches with the Earth considering drag and lift forces. Comp App Mat 1:1–17. doi: 10.1007/s40314-015-0256-x CrossRefzbMATHGoogle Scholar
  20. Gomes VM, Prado AFBA (2010) A study of the impact of the initial energy in a close approach of a cloud of particles. WSEAS Trans Math 9:811–820Google Scholar
  21. Grard R (2006) Mercury: the messenger and bepicolombo missions a concerted approach to the exploration of the planet. Adv Space Res 38(4):563CrossRefGoogle Scholar
  22. Heaton AF, Strange NJ, Longuski JM (2002) Automated design of the Europa Orbiter Tour. J Spacecraft Rockets 39(1):17–22CrossRefGoogle Scholar
  23. Hollister WM, Prussing JE (1966) Optimum transfer to Mars via Venus. Astronaut Acta 12(2):169–179Google Scholar
  24. Jehn R, Companys V, Corral C, Yárnoz DG, Sánchez N (2008) Navigating BepiColombo during the weak-stability capture at Mercury. Adv Space Res 42(8):1364–1369CrossRefGoogle Scholar
  25. Kohlhase CE, Penzo PA (1977) Voyager mission description. Space Sci Rev 21(2):77–101CrossRefGoogle Scholar
  26. Liu CB, Hou XY, Liu L (2007) Transfer from the Earth to a Lissajous orbit around the collinear libration point by lunar Swing-By. Adv Space Res 40:76–82CrossRefGoogle Scholar
  27. Longuski JM, Williams SN (1991) The last grand tour opportunity to Pluto. J Astronaut Sci 39:359–365Google Scholar
  28. Lynam AE, Kloster KW, Longuski JM (2011) Multiple-satellite-aided capture trajectories at Jupiter using the Laplace resonance. Celest Mech Dyn Astr 109:59–84MathSciNetCrossRefGoogle Scholar
  29. Machuy AL, Prado AFBA, Stuchi TJ (2007) Numerical study of the time required for the gravitational capture in the bi-circular four-body problem. Adv Space Res 40(1):118–124CrossRefGoogle Scholar
  30. McConaghy TT, Debban TJ, Petropulos AE, Longuski JM (2003) Design and optimization of low-thrust gravity trajectories with gravity assist. J Spacecraft Rockets 40(3):380–387CrossRefGoogle Scholar
  31. McNutt RL Jr, Solomon SC, Grard R, Novara M, Mukai T (2004) An international program for mercury exploration: synergy of messenger and bepicolombo. Adv Space Res 33(12):2126–2132CrossRefGoogle Scholar
  32. McNutt RL Jr, Solomon SC, Gold RE, Leary JC (2006) The messenger mission to mercury: development history and early mission status. Adv Space Res 38(4):564–571CrossRefGoogle Scholar
  33. Minovich MA (1961) A method for determining interplanetary free-fall reconnaissance trajectories. Pasadena: JPL, 23, p 47 (JPL Tec. Memo 312-130)Google Scholar
  34. Muhonen D, Davis S, Dunham D (1985) Alternative gravity-assist sequences for the ISEE-3 escape trajectory. J Astronaut Sci 33(3):255–273Google Scholar
  35. Murray CD, Dermott SF (1999) Solar system dynamics, 1st edn. Cambridge University PressGoogle Scholar
  36. NASA (1973) Nasa space science data coordinate archive: Mariner 10. Curator: E. Bell.
  37. NASA (1999–2012) Messenger Trajectory, Developed by JHU/APL.
  38. NASA (2010) Lcross—-Lunar Crater Observation and Sensing Satellite—LCROSS Overview. Page Editor: Robert Garner.
  39. Neto EV, Prado AFBA (1998) Time-of-flight analyses for the gravitational capture maneuver. J Guid Control Dyn 21(1):122–126. doi: 10.2514/2.4207 CrossRefzbMATHGoogle Scholar
  40. Pourtakdoust SH, Sayanjali M (2014) Fourth body gravitation effect on the resonance orbit characteristics of the restricted three-body problem. Nonlinear Dyn 76(2):955–972MathSciNetCrossRefGoogle Scholar
  41. Prado AFBA, Broucke RA (1993) Jupiter Swing-By trajectories passing near the Earth. Adv Astronaut Sci 82(Part 2):1159–1176. AAS—AIAA Spaceflight Mechanics Meeting, 3:22–24Google Scholar
  42. Prado AFBA (1996) Powered Swing-By. J Guid Control Dyn 19(5):1142–1147CrossRefGoogle Scholar
  43. Prado AFBA (2002) Numerical Study and Analytic Estimation of the Forces Acting in the Gravitatonal Capture. J Guid Control Dyn 25(2):368–375CrossRefGoogle Scholar
  44. Prado AFBA (2007) A comparison of the patched-conics approach and the restricted problem for swing-bys. Adv Space Res 40:113–117CrossRefGoogle Scholar
  45. Prado AFBA, Broucke RA (1995) A classification of Swing-By trajectories using the moon. Appl Mech Rev 48(11):138–142CrossRefGoogle Scholar
  46. Qian YJ, Zhang W, Yang XD, Yao MH (2016) Energy analysis and trajectory design for low-energy escaping orbit in Earth–Moon system. Nonlinear Dyn 85(1):463–478MathSciNetCrossRefGoogle Scholar
  47. Ross SD, Scheeres DJ (2007) Multiple gravity assists, capture, and escape in the restricted three-body problem. J Appl Dyn Syst 6(3):576–596. doi: 10.1137/060663374 MathSciNetCrossRefzbMATHGoogle Scholar
  48. Salazar FJT, Macau EEN, Winter OC (2014) Alternative transfer to the Earth–Moon Lagrangian points L4 and L5 using lunar gravity assist. Adv. Space Res 53:543–557CrossRefGoogle Scholar
  49. Silva AF, Prado AFBA, Winter OC (2013b) Optimal impulsive control in a powered Swing-By. In: AIAA Guidance, Navigation, and Control (GNC) ConferenceGoogle Scholar
  50. Silva AF, Prado AFBA, Winter OC (2013a) Powered Swing-By maneuvers around the moon. J Phys Conf Ser 465:012001CrossRefGoogle Scholar
  51. Sims JA, Longuski JM, Patel MR (1995) Aerogravity-assist trajectories to the outer planets. Acta Astronaut 35:297–306CrossRefGoogle Scholar
  52. Sims JA, Longuski JM, Patel MR (2000) Aerogravity-assist trajectories to the outer planets and the effect of drag. J Spacecraft Rockets 37:49–55CrossRefGoogle Scholar
  53. Strange NJ, Longuski JM (2002) Graphical method for gravity-assist trajectory design. J Spacecraft Rockets 39:9–16CrossRefGoogle Scholar
  54. Striepe SA, Braun RD (1991) Effects of a Venus Swing-By periapsis burn during an Earth–Mars trajectory. J Astronaut Sci 39(3):299–312Google Scholar
  55. Sukhanov A (1999) Close approach to Sun using gravity assists of the inner planets. Acta Astronaut 45(4–9):177–185CrossRefGoogle Scholar
  56. Szebehely V (1967) Theory of orbits. Academic Press, New YorkzbMATHGoogle Scholar
  57. Vieira Neto E, Winter OC (2001) Time analysis for temporary gravitational capture: satellites of Uranus. Astron J 122(1):440–448CrossRefGoogle Scholar
  58. Zotos EE (2015) Classifying orbits in the restricted three-body problem. Nonlinear Dyn 82(3):1233–1250MathSciNetCrossRefGoogle Scholar

Copyright information

© SBMAC - Sociedade Brasileira de Matemática Aplicada e Computacional 2017

Authors and Affiliations

  • Alessandra F. S. Ferreira
    • 1
    Email author
  • Antônio F. B. A. Prado
    • 1
  • Othon C. Winter
    • 2
  1. 1.Instituto Nacional de Pesquisas EspaciaisSão PauloBrazil
  2. 2.Universidade Estadual PaulistaSão PauloBrazil

Personalised recommendations