Hybrid Operational High Step-Up DC–DC Converter

  • Aluísio Alves de Melo BentoEmail author


High step-up DC–DC voltage converters are widely employed in uninterruptible power supplies and photovoltaic systems. The voltage levels of batteries and photovoltaic panels are, usually, low when compared with the grid-connected inverter requirements. The employment of several PV panels or batteries associated in series, directly connected to the inverter, simplifies the system but at the expense of the cost increase and of a smaller solar lighting efficiency/utilization. Several high step-up DC–DC voltage conversions are presented in the technical literature and include the basic boost converter and its derivations such as cascade, quadratic and interleaved, and voltage multipliers based on Cockcroft–Walton, switched capacitors and hybrid converters. This work presents a hybrid converter based on the boost and the switched-capacitor voltage multiplier. Its features are a low energy processing, robustness and balanced cell voltages. Comparative analysis involving the proposal and existent solutions is carried out. The research is supported by simulation essays carried out with PSpice software and preliminary experimental verification.


Hybrid converter Switched-capacitor converter High step-up DC–DC voltage converter 



  1. Abutbul, O., Gherlitz, A., Berkovich, Y., & Ioinovici, A. (2003). Step-up switching-mode converter with high step-up voltage gain using a switched-capacitor circuit. IEEE Transactions on Circuits and Systems—I: Fundamental Theory and Applications,50(8), 1098–1102.CrossRefGoogle Scholar
  2. Bento, A. A. M., da Silva, E. R. C., & Hartmann, L. V. (2009). DC-DC converter with large conversion ratio employing one-cycle control technique. IEEE APEC,479–485, 2009.Google Scholar
  3. Chung, H. S. (1999). Design and analysis of a switched-capacitor-based step-up DC/DC converter with continuous input current. IEEE Transactions on Circuits and Systems—I: Fundamental Theory and Applications,46(6), 722–730.CrossRefGoogle Scholar
  4. da Silva, R. L., Lazzarin, T. B., & Barbi, I. (2018). Reduced switch count step-up/step-down switched-capacitor three-phase AC–AC converter. IEEE Transactions on Power Electronics,65(11), 8422–8432.Google Scholar
  5. Dwari, S., & Parsa, L. (2011). An efficient high-step-up interleaved DC-DC converter with a common active clamp. IEEE Transactions on Power Electronics,26(1), 66–78.CrossRefGoogle Scholar
  6. Erickson, R. W., & Maksimovic, D. (2004). Fundamentals of power electronics. Dordrecht: Kluwer Academic Publishers.Google Scholar
  7. Fardoun, A. A., & Ismail, E. H. (2010). Ultra step-up DC–DC converter with reduced switch stress. IEEE Transactions on Industry Applications,46(5), 2025–2034.CrossRefGoogle Scholar
  8. Forouzesh, M., Siwakoti, Y. P., Gorji, S. A., Blaabjerg, F., & Lehman, B. (2017). Step-up dc-dc converters: A comprehensive review of voltage boosting techniques, topologies, and applications. IEEE Transactions on Power Electronics,PP(99), 1.Google Scholar
  9. Gules, R., Pfitscher, L. L., & Franco, L. C. (2003). An interleaved boost DC-DC converter with large conversion ratio. In IEEE international symposium on industrial electronics. ISIE ‘03, 9–11 June 2003 (Vol. 1, pp. 411–416).Google Scholar
  10. Ismail, E. H., Al-Saffar, M. A., & Sabzali, A. J. (2008). High conversion ratio DC–DC converters with reduced switch stress. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications,55(7), 2139–2151.MathSciNetCrossRefGoogle Scholar
  11. Ismail, E. H., Al-Saffar, M. A., Sabzali, A. J., & Fardoun, A. A. (2010). High voltage gain single-switch non-isolated DC-DC converters for renewable energy applications. In Proceedings of IEEE international conference on sustainable energy technologies (pp. 1–6).Google Scholar
  12. Kawa, A., Stala, R., Mondzik, A., Pirog, S., & Penczek, A. (2016). High-power thyristor-based DC–DC switched-capacitor voltage multipliers: Basic concept and novel derived topology with reduced number of switches. IEEE Transactions on Power Electronics,31(10), 6797–6813.Google Scholar
  13. Kobougias, I. C., & Tatalis, E. C. (2010). Optimal design of a half-wave Cockcroft–Walton voltage multiplier with minimum total capacitance. IEEE Trans on Power Electronics,25(9), 2460–2468.CrossRefGoogle Scholar
  14. Mahajan, S. B., Sanjeevikumar, P., Ojo, O., Rivera, M., & Kulkarani, R. (2016). Non-isolated and inverting Nx multilevel boost converter for photovoltaic DC link applications. In Proceedings of IEEE international conference on automatic IEEE-ICA-ACCA’16, 19–21 Oct. 2016 (pp. 1–8).Google Scholar
  15. Peng, F. Z. (2001). A generalized multilevel inverter topology with self voltage balancing. IEEE Transactions on Industry Applications,37(2), 611–618.CrossRefGoogle Scholar
  16. Rashid, M. H. (Ed.). (2011). Power electronics handbook: Devices, circuits, and applications handbook (3rd ed.). Amsterdam: Elsevier.Google Scholar
  17. Saadat, P., & Abbaszadeh, K. (2016). A single switch high step up DC–DC converter based on quadratic boost. IEEE Transactions on Industrial Electronics,63(12), 7733–7742.CrossRefGoogle Scholar
  18. Santos, R. S., Lazzarin, T. B., & Barbi, I. (2017). A single-phase hybrid switched-capacitor inverter for high step-down application. Brazilian Journal of Power Electronics,22(4), 398–407.Google Scholar
  19. Schmitz, L., Coelho, R. F., & Martins, D. C. (2015). High step-up high efficiency dc–dc converter for module-integrated photovoltaic applications. In 2015 IEEE 13th Brazilian power electronics conference (pp. 1–6).Google Scholar
  20. Schmitz, L., Martins, D. C., & Coelho, R. F. (2017). Generalized high step-up DC-DC boost-based converter with gain cell. IEEE Transactions on Circuits and Systems I: Regular Papers,64(2), 480–493.CrossRefGoogle Scholar
  21. Tofoli, F. L., Pereira, D. C., de Paula, W. J., et al. (2015). Survey on nonisolated high-voltage step-up dc–dc topologies based on the boost converter. IET Power Electronics,8(10), 2044–2057.CrossRefGoogle Scholar
  22. Waradzyn, Z., Stala, R., Mondzik, A., Penczek, A., Skala, A., & Pirog, S. (2017). Efficiency analysis of MOSFET-based air-choke resonant DC–DC step-up switched-capacitor. IEEE Transactions on Industrial Electronics,64(11), 8728–8738.CrossRefGoogle Scholar
  23. Young, C., Chen, H., & Chen, M. (2014). A Cockcroft–Walton voltage multiplier fed by a three-phase-to-single-phase matrix converter with PFC. IEEE Transactions on Industry Applications,50(3), 1994–2004.CrossRefGoogle Scholar
  24. Young, C. M., Ko, C. C., Wu, C. C., Chen, M. H. (2011). A Cockcroft–Walton voltage multiplier with PFC using ZC-ZVT auxiliary circuit. In Proceedings of the IEEE IECON (pp. 1000–1005).Google Scholar
  25. Zhang, X., & Green, T. C. (2015). The modular multilevel converter for high step-up/Dn ratio DC–DC conversion. IEEE Transactions on Industrial Electronics,62(8), 4925–4936.CrossRefGoogle Scholar
  26. Zhang, N., Sutanto, D., Muttaqi, K. M., Zhang, B., & Qiu, D. (2015). High-voltage-gain quadratic boost converter with voltage multiplier. IET Power Electronics,8(12), 2511–2519.CrossRefGoogle Scholar
  27. Zhu, X., Zhang, B., Li, Z., Li, H., & Ran, L. (2017). Extended switched-boost dc-dc converters adopting switched-capacitor/switched-inductor cells for high step-up conversion. IEEE Journal of Emerging and Selected Topics in Power Electronics,5(3), 1020–1030.CrossRefGoogle Scholar

Copyright information

© Brazilian Society for Automatics--SBA 2019

Authors and Affiliations

  1. 1.State University of Rio de Janeiro - UERJRio de JaneiroBrazil

Personalised recommendations