Adaptive Control of a 3-DOF Helicopter Under Structured and Unstructured Uncertainties

  • Hicham ChaouiEmail author
  • Sumit Yadav


In this paper, an adaptive control strategy is presented for a three-degree-of-freedom helicopter under both structured and unstructured uncertainties. The adaptive control scheme learns online the helicopter’s inverse model with a Lyapunov-based adaptation law to estimate the system’s parameters. Moreover, a reference model is introduced to stabilize the helicopter at start-up and cope with unstructured uncertainties such as external disturbance. Therefore, the controller achieves accurate motion tracking in the presence of both structured uncertainties (parameters variation) and unstructured uncertainties (unknown disturbance). Unlike many controllers, the proposed adaptive control scheme’s stability is guaranteed by Lyapunov direct method. The proposed controller’s performance in coping with various uncertainties is highlighted in different operating conditions.


Adaptive control Helicopters Parameter variation Uncertainties 



  1. Boby, R. I., Mansor, H., Gunawan, T. S., & Khan, S. (2014). Robust adaptive LQR contol of nonlinear system application to 3-DOF flight control system. In International conference on smart instrumentation, measurement and applications, IEEE.Google Scholar
  2. Castaneda, H., Plestan, F., Chriette, A., & de Leon-Morales, J. (2016). Continuous differentiator based on adaptive second-order sliding-mode control for a 3-DOF helicopter. IEEE Transactions on Industrial Electronics, 63(9), 5786–5793.CrossRefGoogle Scholar
  3. Chaoui, H., & Gueaieb, W. (2008). Type-2 fuzzy logic control of a flexible-joint manipulator. Journal of Intelligent and Robotic Systems, 51(2), 159–186.CrossRefGoogle Scholar
  4. Chaoui, H., & Sicard, P. (2012a). Neural network modeling of cold-gas thrusters for a spacecraft formation flying test-bed. In IEEE conference on industrial electronics society (pp. 2619 – 2621).Google Scholar
  5. Chaoui, H., & Sicard, P. (2012b). Adaptive fuzzy logic control of permanent magnet synchronous machines with nonlinear friction. IEEE Transactions on Industrial Electronics, 59(2), 1123–1133.CrossRefGoogle Scholar
  6. Chen, M., Shi, P., & Lim, C. C. (2016). Adaptive neural fault-tolerant control of a 3-DOF model helicopter system. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 46(2), 260–270.CrossRefGoogle Scholar
  7. Coza, C., & Macnab, C. (2006). A new robust adaptive-fuzzy control method applied to quadrotor helicopter stabilization. In Annual meeting of the North American Fuzzy Information Processing Society (NAFIPS) (pp. 454–458).Google Scholar
  8. Cruz, S. S., Kendoul, F., Lozano, R., & Fantoni, I. (2008). Real-time stabilization of a small three-rotor aircraft. IEEE Transactions on Aerospace and Electronic Systems, 44(2), 783–794.CrossRefGoogle Scholar
  9. Dierks, T., & Jagannathan, S. (2010). Output feedback control of a quadrotor UAV using neural networks. IEEE Transactions on Neural Networks, 21(1), 50–66.CrossRefGoogle Scholar
  10. Du, Y., Fang, J., & Miao, C. (2014). Frequency-domain system identification of an unmanned helicopter based on an adaptive genetic algorithm. IEEE Transactions on Industrial Electronics, 61(2), 870–881.CrossRefGoogle Scholar
  11. Dube, D. Y., & Patel, H. G. (2016). Control design of 3 DOF helicopter system. In International conference on industrial and information systems (pp. 247–252).Google Scholar
  12. Efe, M. O. (2011). Neural network assisted computationally simple PI lambda D mu control of a quadrotor UAV. IEEE Transactions on Industrial Informatics, 7(2), 354–361.CrossRefGoogle Scholar
  13. Fradkov, A. L., Andrievsky, B., & Peaucelle, D. (2010). Estimation and control under information constraints for LAAS helicopter benchmark. IEEE Transactions on Control Systems Technology, 18(5), 1180–1187.CrossRefGoogle Scholar
  14. Gao, W. N., & Fang, Z. (2012). Adaptive integral backstepping control for a 3-DOF helicopter. In International conference on information and automation (pp. 190–195).Google Scholar
  15. Guo, Y., Zheng, Z., Zhu, M., & Wu, Z. (2016). Neural network tracking control of the 3-DOF helicopter with input saturation. In Chinese control and decision conference IEEE (pp. 2656–2660).Google Scholar
  16. Khayamy, M., Chaoui, H., Oukaour, A., & Gualous, H. (2016). Adaptive fuzzy logic control mixing strategy of DC/DC converters in both discontinuous and continuous conduction modes. Journal of Control, Automation and Electrical Systems, 7(3), 274–288.CrossRefGoogle Scholar
  17. Kocagil, B. M., Ozcan, S., Arican, A. C., Guzey, U. M., Copur, E. H., & Salamci, M. U. (2018). MRAC of a 3-DOF helicopter with nonlinear reference model. In Mediterranean conference on control and automation, IEEE (pp. 278–283).Google Scholar
  18. Kutay, A. T., Calise, A. J., Idan, M., & Hovakimyan, N. (2005). Experimental results on adaptive output feedback control using a laboratory model helicopter. IEEE Transactions on Control Systems Technology, 13(2), 196–202.CrossRefGoogle Scholar
  19. Li, Z., Liu, H. H. T., Zhu, B., & Gao, H. (2015a). Robust second-order consensus tracking of multiple 3-DOF laboratory helicopters via output feedback. IEEE/ASME Transactions on Mechatronics, 20(5), 2538–2549.CrossRefGoogle Scholar
  20. Li, Z., Liu, H. H. T., Zhu, B., Gao, H., & Kaynak, O. (2015b). Nonlinear robust attitude tracking control of a table-mount experimental helicopter using output feedback. IEEE Transactions on Industrial Electronics, 62(9), 5665–5676.CrossRefGoogle Scholar
  21. Li, C., Quan, K., Xiao, B., & Yang, X. (2017). Adaptive fuzzy-based backstepping control of a 3-DOF helicopter testbed with dead-zone. In International conference on advanced mechatronic systems (pp. 208–2013).Google Scholar
  22. Liu, H., Lu, G., & Zhong, Y. (2013). Robust LQR attitude control of a 3-DOF laboratory helicopter for aggressive maneuvers. IEEE Transactions on Industrial Electronics, 60(10), 4627–4636.CrossRefGoogle Scholar
  23. Marantos, P., Bechlioulis, C. P., & Kyriakopoulos, K. J. (2017). Robust trajectory tracking control for small-scale unmanned helicopters with model uncertainties. IEEE Transactions on Control Systems Technology, 25(6), 2010–2021.CrossRefGoogle Scholar
  24. Pedro, J. O., & Kala, P. J. (2015). Nonlinear control of quadrotor UAV using Takagi–Sugeno fuzzy logic technique. In IEEE control conference (ASCC), 2015 10th Asian (pp. 1–6).Google Scholar
  25. Rajappa, S., Chriette, A., Chandra, R., & Khalil, W. (2013). Modeling and dynamic identification of 3 DOF Quanser helicopter. In IEEE/RSJ international conference on intelligent robots and systems.Google Scholar
  26. Tanaka, K., Ohtake, H., & Wang, H. O. (2004). A practical design approach to stabilization of a 3-DOF RC helicopter. IEEE Transactions on Control Systems Technology, 12(2), 315–325.CrossRefGoogle Scholar
  27. Veeraboina, A. K., & Ordonez, R. (2018). Design and implementation of linear/nonlinear control methods on 3-DOF helicopter. In IEEE national aerospace and electronics conference, IEEE (pp. 435–442).Google Scholar
  28. Xian, B., Guo, J., & Zhang, Y. (2015). Adaptive backstepping tracking control of a 6-DOF unmanned helicopter. IEEE/CAA Journal Of Automatica Sinica, 2(1), 19–24.MathSciNetCrossRefGoogle Scholar
  29. Zheng, B., & Zhong, Y. (2011). Robust attitude regulation of a 3-DOF helicopter benchmark theory and experiments. IEEE Transactions on Industrial Electronics, 58(2), 660–670.CrossRefGoogle Scholar
  30. Zou, Y., & Zheng, Z. (2015). A robust adaptive RBFNN augmenting backstepping control approach for a model-scaled helicopter. IEEE Transactions on Control Systems Technology, 23(6), 2344–2352.CrossRefGoogle Scholar

Copyright information

© Brazilian Society for Automatics--SBA 2019

Authors and Affiliations

  1. 1.Intelligent Robotic and Energy Systems (IRES), Department of ElectronicsCarleton UniversityOttawaCanada
  2. 2.Electrical and Computer EngineeringTennessee Technological UniversityCookevilleUSA

Personalised recommendations