Advertisement

Optimal Placement of Series Capacitive Compensation in Transmission Network Expansion Planning

  • Luis A. GallegoEmail author
  • Lina P. Garcés
  • Javier Contreras
Article
  • 28 Downloads

Abstract

This paper proposes a novel mathematical model to solve the static and multistage transmission network expansion planning problems considering the optimal placement of series capacitive compensation (SCC) devices. This model jointly examines the construction of new transmission lines, transformers, and the optimal placement of SCC devices to minimize the total investment cost while satisfying the demand requirements in the planning horizon. The problem is formulated as a mixed-integer nonlinear programming problem, which is solved using a high-performance hybrid genetic algorithm. Simulations done in four electrical systems (IEEE 24-bus, South Brazilian 46-bus, North-Northeast Brazilian 87-bus, and Colombian 93-bus) show that inclusion of SCC devices in the planning model results in lower investment cost and a better redistribution of power flows through transmission components.

Keywords

Transmission network expansion planning Optimal placement of series capacitive Mixed-integer nonlinear programming problem High-performance hybrid genetic algorithm 

Sets

\(\varOmega _\mathrm{b}\)

Set of all network buses

\(\varOmega _\mathrm{l}\)

Set of all transmission right-of-way

\(\varOmega _\mathrm{s}\)

Set of all transmission right-of-way with SCC devices

\(\varOmega _\mathrm{t}\)

Set of stages considered in the multistage planning

Constants

\(c_{ij}\)

Cost of a circuit added in the right-of-way \(i-j\) (US$)

\(c_{ij}^\mathrm{scc}\)

Cost of SCC installed in the right-of-way \(i-j\) (US$)

d

Demand vector with elements of the \(d_{i}\) type corresponding to the demand at bus i (MW)

\(d_{i}\)

Maximum demand in the bus i (MW)

\(d_{i}^{t}\)

Maximum demand in the bus i at stage t (MW)

\(\overline{f}_{ij}\)

Maximum power flow per circuit \(i-j\) (MW)

\(\overline{g}_{i}\)

Maximum generation in the bus i (MW)

I

Annual discount rate

k

Iteration counter

\(k_\mathrm{ps}\)

Population size

\(k_\mathrm{sr}\)

Selection rate

\(k_\mathrm{mr}\)

Mutation rate (%)

\(k_\mathrm{of}\)

Maximum number of iterations without improvement in the objective function

m

Iteration counter without an improvement in the objective function

\(n_\mathrm{l}\)

Total number of circuits in the network

\(n_\mathrm{l}^\mathrm{scc}\)

Total number of lines with SCC devices in the network

\(n_{ij}^\mathrm{o}\)

Number of circuits in the base electrical network

\(\overline{n}_{ij}\)

Maximum number of circuits in the right-of-way \(i-j\)

\(\alpha \)

Penalty parameter associated with load shedding (US$/MW)

\(\gamma _{ij}\)

Susceptance of circuit \(i-j\) (p.u.)

\(\delta _\mathrm{inv}^{t}\)

Present value of the investment (US$)

\(\delta _\mathrm{oper}^{t}\)

Present value of operation cost (US$)

Variables

\(\mathbf{B}\)

Susceptance matrix of the initial network and candidate circuits (p.u)

\(f_{ij}\)

Power flow in the right-of-way \(i-j\) (MW)

\(\mathbf{g}\)

Real power generation vector with elements \(g_{i}\) corresponding to the generation in bus i (MW)

\(n_{ij}\)

Number of circuits added in the right-of-way \(i-j\)

\(n_{ij}^{t}\)

Number of circuits added in the right-of-way \(i-j\) at stage t

\(r_{i}\)

Artificial generation at bus i (MW)

\(\mathbf{r}\)

Artificial generators vector with elements \(r_{i}\) corresponding to the artificial generation in bus i (MW)

\(x_{ij}^\mathrm{total}\)

Reactance of the compensated circuit (p.u)

\(x_{ij}\)

Reactance of the line without compensation (p.u.)

\(x_{ij}^\mathrm{scc}\)

Reactance associated with the SCC device (p.u.)

\(\beta _{ij}\)

Percentage (between 0 and 1) of the cost of installing SCC devices in the right-of-way \(i-j\)

\(\gamma _{ij}^\mathrm{total}\)

Total susceptance of the compensated right-of-way \(i-j\) (p.u.)

\(\varvec{\varTheta }\)

Phase angle vector of the bus voltage with elements \(\theta _{i}\) corresponding to the angle of the voltage in bus i (radians)

\(\lambda _{ij}\)

Percentage (between 0 and 1) of the reactive compensation in the right-of-way \(i-j\)

Notes

References

  1. Anderson, R. G., & Farmer, P. M. (1996). Series compensation of power systems. CA: EUA: PBLSH, Inc.Google Scholar
  2. Domínguez, A. H., Escobar, A. H., & Gallego, R. A. (2017). An MILP model for the static transmission expansion planning problem including HVAC/HVDC links, security constraints and power losses with a reduced search space. Electric Power Systems Research, 143, 611–623.  https://doi.org/10.1016/j.epsr.2016.10.055.CrossRefGoogle Scholar
  3. Edris, A.-A. (1997). Proposed terms and definitions for flexible AC transmission system (FACTS). IEEE Transactions on Power Delivery, 12(4), 1848–1853.  https://doi.org/10.1109/61.634216.CrossRefGoogle Scholar
  4. Escobar, A. H., Gallego, R. A., & Romero, R. (2004). Multistage and coordinated planning of the expansion of transmission systems. IEEE Transactions on Power Systems, 19(2), 735–744.  https://doi.org/10.1109/TPWRS.2004.825920.CrossRefGoogle Scholar
  5. Gallego, L. A., Garcés, L. P., Rahmani, M., & Romero, R. A. (2017). High-performance hybrid genetic algorithm to solve transmission network expansion planning. IET Generation, Transmission & Distribution, 11(5), 1111–1118.  https://doi.org/10.1049/iet-gtd.2016.0511.CrossRefGoogle Scholar
  6. Garcés, L., & Romero, R. (2009). Specialized genetic algorithm for transmission network expansion planning considering reliability. In 15th International conference on intelligent system applications to power systems (ISAP’09).Google Scholar
  7. Glover, F. (1996). Tabu search and adaptive memory programming-advances, applications and challenges. Interfaces in Computer Science and Operations Research, 1, 1–75.  https://doi.org/10.1007/978-1-4615-4102-8-1.CrossRefzbMATHGoogle Scholar
  8. Glover, F., Laguna, M., & Martí, R. (2000). Fundamentals of scatter search and path relinking. Control and Cybernetics, 39, 653–684.  https://doi.org/10.1007/978-1-4419-1665-5-4.MathSciNetCrossRefzbMATHGoogle Scholar
  9. Khan, I., Mallick, M., Rafi, M., & Mirza, M. S. (2015). Optimal placement of FACTS controller scheme for enhancement of power system security in Indian scenario. Journal of Electrical Systems and Information Technology, 2(2), 161–171.  https://doi.org/10.1016/j.jesit.2015.03.013.CrossRefGoogle Scholar
  10. Leonidaki, E., Manos, G., & Hatziargyriou, N. (2005). An effective method to locate series compensation for voltage stability enhancement. Electric Power Systems Research, 74(1), 73–81.  https://doi.org/10.1016/j.epsr.2004.09.006.CrossRefGoogle Scholar
  11. Milano, F. (2010). Power system modeling and scripting. Berlin: Springer.CrossRefGoogle Scholar
  12. Oliveira, A. L. P. (2007). Avaliação do Comportamento da Proteção de Distância em Linhas de Transmissão com Compensação Série Fixa através da Simulação Digital em Tempo Real., Tese de Mestrado. Universidade Federal de Itajubá – Itajubá, Minas Gerais, Brasil.Google Scholar
  13. Pinheiro, J. M. S., Dornellas, C. R. R., Schilling, M. T., Melo, A. C. G., & Mello, J. C. O. (1998). Probing the new IEEE reliability test system (RTS-96): HL-II assessment. IEEE Transactions on Power Systems, 13(1), 171–176.  https://doi.org/10.1109/59.651632.CrossRefGoogle Scholar
  14. Rahmani, M., Romero, R., & Rider, M. J. (2013). Strategies to reduce the number of variables and the combinatorial search space of the multistage transmission expansion planning problem. IEEE Transactions on Power Systems, 28(3), 2164–2173.  https://doi.org/10.1109/TPWRS.2012.2223241.CrossRefGoogle Scholar
  15. Rahmani, M., Vinasco, G., Rider, M. J., Romero, R., & Pardalos, P. M. (2013). Multistage transmission expansion planning considering fixed series compensation allocation. IEEE Transactions on Power Systems, 28(4), 3795–3805.  https://doi.org/10.1109/TPWRS.2013.2266346.CrossRefGoogle Scholar
  16. Rider, M., de Silva, I. J., Romero, R., Garcia, A., & Murari, C. (2005). Transmission network expansion planning in full open market considering security constraints. In IEEE Power Technology (pp. 1–6).Google Scholar
  17. Rider, M. J., Garcia, A. V., & Romero, R. (2008). Transmission system expansion planning by a branch-and-bound algorithm. IET Generation, Transmission & Distribution, 2(1), 90–99.  https://doi.org/10.1049/iet-gtd:20070090.CrossRefGoogle Scholar
  18. Romero, R., Monticelli, A., Garcia, A., & Haffner, S. (2002). Test systems and mathematical models for transmission network expansion planning. IEE Proceedings - Generation, Transmission and Distribution, 149(1), 27–36.  https://doi.org/10.1049/ip-gtd:20020026.CrossRefGoogle Scholar
  19. Romero, R., Rider, M., & Silva, I. D. J. (2007). A metaheuristic to solve the transmission expansion planning. IEEE Transactions on Power Systems, 22(4), 2289–2291.CrossRefGoogle Scholar
  20. Silva, I., Rider, M., Romero, R., & Murari, C. (2006a). Genetic algorithm of Chu and Beasley for static and multistage transmission expansion planning. In IEEE power engineering society general meeting (pp. 1–7).  https://doi.org/10.1109/PES.2006.1709172.
  21. Silva, I. d J., Rider, M., Romero, R., & Murari, C. (2006). Transmission network expansion planning considering uncertainty in demand. IEEE Transactions on Power Systems, 21(4), 1565–1573.  https://doi.org/10.1109/TPWRS.2006.881159.CrossRefGoogle Scholar
  22. Silva, I. de J., Rider, M., Romero, R., Garcia, A., & Murari, C. (2005). Transmission network expansion planning with security constraints. IEE Proceedings Generation, Transmission & Distribution, 152(6), 828–836.  https://doi.org/10.1049/ip-gtd:20045217.CrossRefGoogle Scholar
  23. Sum Im, T., Taylor, G., Irving, M., & Song, Y. (2009). Differential evolution algorithm for static and multistage transmission expansion planning. IET Generation, Transmission & Distribution, 3(4), 365.  https://doi.org/10.1049/iet-gtd.2008.0446.CrossRefGoogle Scholar
  24. Tejada, D., López-Lezama, J. M., Rider, M. J., & Vinasco, G. (2015). Transmission network expansion planning considering repowering and reconfiguration. International Journal of Electrical Power & Energy Systems, 69, 213–221.  https://doi.org/10.1016/j.ijepes.2015.01.008.CrossRefGoogle Scholar
  25. Vinasco, G., Rider, M. J., & Romero, R. (2011). A strategy to solve the multistage transmission expansion planning problem. IEEE Transactions on Power Systems, 26(4), 2574–2576.  https://doi.org/10.1109/TPWRS.2011.2126291.CrossRefGoogle Scholar
  26. Zamora-Cárdenas, A., & Fuerte-Esquivel, C. R. (2010). Multi-parameter trajectory sensitivity approach for location of series-connected controllers to enhance power system transient stability. Electric Power Systems Research, 80(9), 1096–1103.  https://doi.org/10.1016/j.epsr.2010.02.002.CrossRefGoogle Scholar

Copyright information

© Brazilian Society for Automatics--SBA 2019

Authors and Affiliations

  1. 1.Department of Electrical EngineeringLondrina State UniversityLondrinaBrazil
  2. 2.Electrical, Mechanical and Computer Engineering SchoolFederal University of GoiásGoiâniaBrazil
  3. 3.E.T.S. de Ingenieros IndustrialesUniversity of Castilla–La ManchaCiudad RealSpain

Personalised recommendations