Loading Margin Sensitivity in Relation to the Wind Farm Generation Power Factor for Voltage Preventive Control

  • Victor R. Neumann SilvaEmail author
  • Roman Kuiava


Due to the growing importance of wind farms in the electric power generation matrix in many countries, for example, in Brazil, this paper proposes voltage preventive control actions as an activity to support the programming of the operation of the electric system, based on the ranking of wind power units that most significantly impact the system’s loading margin through the control of its power factor. A sensitivity index is proposed to obtain this ranking, whose mathematical formulation is based on a linear approximation of the power balance equations in the vicinity of the maximum loading point. The system used to test this proposal is a 56-bus system prepared with current real data from the Northeast subsystem of the National Interconnected System of Brazil that includes 22 wind farms with 234 wind turbines, which comprise a total of 600 MW of installed capacity. The results obtained for the 56-bus test system show the applicability of the proposed voltage preventive control actions by indicating the wind farms that can contribute most significantly to the increase in the system’s loading margin from an adequate adjustment of the power factor of these units.


Voltage preventive control Wind farms Sensitivity analysis Loading margin Modified power factor Saddle-node bifurcation 



  1. Abdelrahem, M., & Kennel, R. (2016). Fault-ride through strategy for permanent-magnet synchronous generators in variable-speed wind turbines. Energies, 9(12), 1066.CrossRefGoogle Scholar
  2. Baghsorkhi, S. S. (2015). Computing saddle-node and limit-induced bifurcation manifolds for subtransmission and transmission wind generation. In Power and Energy Society General Meeting, 2015 IEEE (pp. 1–5). IEEEGoogle Scholar
  3. Belati, E. A., Sguarezi Filho A. J., Salles, M. B. C., Adélia, R. S., & Gualberto, L. (2013). Analysis of reactive power capability for doubly-fed induction generator of wind energy systems using an optimal reactive power flow.Google Scholar
  4. Cimino, M., & Pagilla, P. R. (2016). Reactive power control for multiple synchronous generators connected in parallel. IEEE Transactions on Power Systems, 31(6), 4371–4378.CrossRefGoogle Scholar
  5. Colombari, L., Kuiava, R., Peric, V., & Ramos, R. A. (2019). Continuation load flow considering discontinuous behaviors of distribution grids. IEEE Transactions on Power Systems, 1, 1.CrossRefGoogle Scholar
  6. Dobson, I. (1994). The irrelevance of load dynamics for the loading margin to voltage collapse and its sensitivities. In Sensitivities (vol. 29, pp. 509–518).Google Scholar
  7. Gao, B., Morison, G. K., & Kundur, P. (1992). Voltage stability evaluation using modal analysis. IEEE Transactions on Power Systems, 7(4), 1529–1542.CrossRefGoogle Scholar
  8. Greene, S., Dobson, I., & Alvarado, F. L. (1997). Sensitivity of the loading margin to voltage collapse with respect to arbitrary parameters. IEEE Transactions on Power Systems, 12(1), 262–272.CrossRefGoogle Scholar
  9. Hatziargyriou, N., Van Cutsem, T., Milanović, J., Pourbeik, P., Vournas, C., Vlachokyriakou, O., Kotsampopoulos, P., Ramos, R., Boemer, J., Aristidou, P., et al. (2017). Contribution to bulk system control and stability by distributed energy resources connected at distribution network. IEEE. Google Scholar
  10. Hu, J., Li, Y., & Zhu, J. (2019). Multi-objective model predictive control of doubly-fed induction generators for wind energy conversion. IET Generation, Transmission Distribution, 13(1), 21–29. CrossRefGoogle Scholar
  11. Jung, J., & Hofmann W. (2011). Investigation of thermal stress in the rotor of doubly-fed induction generators at synchronous operating point. In 2011 IEEE international electric machines drives conference (IEMDC) (pp. 896–901).Google Scholar
  12. Konopinski, R. J., Vijayan, P., & Ajjarapu, V. (2009). Extended reactive capability of DFIG wind parks for enhanced system performance. IEEE Transactions on Power Systems, 24(3), 1346–1355.CrossRefGoogle Scholar
  13. Lalouni, S., Rekioua, D., Idjdarene, K., & Tounzi, A. M. (2014). An improved MPPT algorithm for wind energy conversion system. Journal of Electrical Systems, 10(4), 484.Google Scholar
  14. Lund, T., Sørensen, P., & Eek, J. (2007). Reactive power capability of a wind turbine with doubly fed induction generator. Wind Energy: An International Journal for Progress and Applications in Wind Power Conversion Technology, 10(4), 379–394.CrossRefGoogle Scholar
  15. Mansour, M. R., Alberto, L. F. C., & Ramos, R. A. (2016). Preventive control design for voltage stability considering multiple critical contingencies. IEEE Transactions on Power Systems, 31(2), 1517–1525.CrossRefGoogle Scholar
  16. Martin, J. A., & Hiskens, I. A. (2015). Reactive power limitation due to wind-farm collector networks. In 2015 IEEE Eindhoven PowerTech (pp. 1–6).Google Scholar
  17. Meegahapola, L., Littler, T., & Perera, S. (2013). Capability curve based enhanced reactive power control strategy for stability enhancement and network voltage management. International Journal of Electrical Power and Energy Systems, 52, 96–106.CrossRefGoogle Scholar
  18. Meegahapola, L. G., Littler, T., & Flynn, D. (2010). Decoupled-DFIG fault ride-through strategy for enhanced stability performance during grid faults. IEEE Transactions on Sustainable Energy, 1(3), 152–162.CrossRefGoogle Scholar
  19. Milano, F. (2006). An open source power system analysis toolbox. In Power engineering society general meeting, 2006. IEEE (p 1). IEEE.Google Scholar
  20. Operador Nacional do Sistema Elétrico ONS. (2019). Boletim mensal de geração eólica - dezembro/2018, p. 9.Google Scholar
  21. Operador Nacional do Sistema Elétrico ONS. (2019). Mapa dinámico - sistema de informações geográficas cadastrais.
  22. Raza, K. S. M., Goto, H., Guo, H.-J., & Ichinokura O. (2008). A novel algorithm for fast and efficient maximum power point tracking of wind energy conversion systems. In 2008 18th international conference on electrical machines (pp. 1–6).Google Scholar
  23. Seydel, R. (2009). Practical bifurcation and stability analysis (Vol. 5). Berlin: Springer.zbMATHGoogle Scholar
  24. Simoes, M. G., Bose, B. K., & Spiegel, R. J. (1997). Fuzzy logic based intelligent control of a variable speed cage machine wind generation system. IEEE Transactions on Power Electronics, 12(1), 87–95.CrossRefGoogle Scholar
  25. Sl-Subhi, A., Alsumiri, M., & Alalwani S. (2017). Novel MPPT algorithm for low cost wind energy conversion systems. In 2017 international conference on advanced control circuits systems (ACCS) systems, 2017 international conference on new paradigms in electronics information technology (PEIT) (pp. 144–148).Google Scholar
  26. Tamimi, B., Cañizares, C., & Bhattacharya, K. (2011). Modeling and performance analysis of large solar photo-voltaic generation on voltage stability and inter-area oscillations. In Power and energy society general meeting, 2011 IEEE, pp. 1–6. IEEEGoogle Scholar
  27. Tarchala, G. (2011). Influence of the sign function approximation form on performance of the sliding-mode speed observer for induction motor drive. In 2011 IEEE international symposium on industrial electronics (ISIE), pp 1397–1402. IEEEGoogle Scholar
  28. Van Cutsem, T. (2000). Voltage instability: Phenomena, countermeasures, and analysis methods. Proceedings of the IEEE, 88(2), 208–227.CrossRefGoogle Scholar

Copyright information

© Brazilian Society for Automatics--SBA 2019

Authors and Affiliations

  1. 1.Department of Engineering and Exact SciencesFederal University of ParanaPalotinaBrazil
  2. 2.Department of Electrical EngineeringFederal University of ParanaCuritibaBrazil

Personalised recommendations