Advertisement

Autonomous Landing of UAV Based on Artificial Neural Network Supervised by Fuzzy Logic

  • João Pedro Carvalho de Souza
  • André Luís Marques MarcatoEmail author
  • Eduardo Pestana de Aguiar
  • Marco Aurélio Jucá
  • Alexandre Menezes Teixeira
Article
  • 23 Downloads

Abstract

Autonomous Unmanned Aerial Vehicles (UAVs) become an important field of research in which multiple applications can be designed, such as surveillance, deliveries, and others. Thus, studies aiming to improve the performance of these vehicles are being proposed: from new sensing solutions to more robust control techniques. Additionally, the autonomous UAV has challenges in flight stages as the landing. This procedure needs to be performed safely with a reduced error margin in static and dynamic targets. To solve this imperative issue, many applications with computer vision and control theory have been developed. Therefore, this paper presents an alternative method to train a multilayer perceptron neural network based on fuzzy Mamdani logic to control the landing of a UAV on an artificial marker. The advantage of this method is the reduction in computational complexity while maintaining the characteristics and intelligence of the fuzzy logic controller. Results are presented with simulation and real tests for static and dynamic landing spots. For the real experiments, a quadcopter with an onboard computer and ROS is used.

Keywords

UAV Vision-based landing ANN Fuzzy logic controller Onboard systems 

Notes

Acknowledgements

The authors would like to thank CAPES, CNPq, FAPEMIG, UFJF, PPEE, INERGE, ANEEL and CTG Brasil for their support.

References

  1. Abu-Jbara, K., Alheadary, W., Sundaramorthi, G., & Claudel, C. (2015). A robust vision-based runway detection and tracking algorithm for automatic UAV landing. In 2015 International conference on unmanned aircraft systems (ICUAS) (pp. 1148–1157). IEEE.Google Scholar
  2. Amazon.com. Amazon prime air. (2015). http://www.amazon.com/b?node=8037720011.
  3. Benavidez, P., Lambert, J., Jaimes, A., & Jamshidi, M. (2014). Landing of an ardrone 2.0 quadcopter on a mobile base using fuzzy logic. In World Automation Congress (WAC), 2014 (pp. 803–812). IEEE.Google Scholar
  4. Carvalho, J. P., Jucá, M., Menezes, A., Olivi, L., Bessa, A., & Marcato, A. (2016). Landing an UAV in a dynamical target using fuzzy control and computer vision. In Congresso Brasileiro de Automática (CBA), 2016.Google Scholar
  5. Carvalho, J. P., Jucá, M., Menezes, A., Olivi, L., Bessa, A., & Marcato, A. (2017). Lecture notes in electrical engineering, chapter Autonomous UAV outdoor flight controlled by an embedded system using Odroid and ROS, (402 ed, pp. 423–437). Springer.Google Scholar
  6. Cocchioni, F., Pierfelice, V., Benini, A., Mancini, A., Frontoni, E., Zingaretti, P., Ippoliti, G., & Longhi, S. (2014). Unmanned ground and aerial vehicles in extended range indoor and outdoor missions. In 2014 International conference on unmanned aircraft systems (ICUAS) (pp. 374–382). IEEE.Google Scholar
  7. Delgado, F. S., Carvalho, J. P., Coelho, T. V. N., & Dos Santos, A. B. (2016). An optical fiber sensor and its application in UAVs for current measurements. Sensors, 16(11), 1800.CrossRefGoogle Scholar
  8. Freire, F. P., Martins, N. A., & Splendor, F. (2018). A simple optimization method for tuning the gains of PID controllers for the autopilot of cessna 182 aircraft using model-in-the-loop platform. Journal of Control, Automation and Electrical Systems, 29, 1–10.CrossRefGoogle Scholar
  9. Gautam, A., Sujit, P., & Saripalli, S. (2014). A survey of autonomous landing techniques for UAVs. In 2014 International conference on unmanned aircraft systems (ICUAS), (pp. 1210–1218). IEEE.Google Scholar
  10. Gui, Y., Guo, P., Zhang, H., Lei, Z., Zhou, X., Du, J., et al. (2013). Airborne vision-based navigation method for UAV accuracy landing using infrared lamps. Journal of Intelligent and Robotic Systems, 72(2), 197–218.CrossRefGoogle Scholar
  11. Guo, X., Denman, S., Fookes, C., Mejias, L., & Sridharan, S. (Nov 2014) Automatic UAV forced landing site detection using machine learning. In 2014 International conference on digital lmage computing: Techniques and applications (DlCTA) (pp. 1–7).  https://doi.org/10.1109/DICTA.2014.7008097.
  12. HardKernel. Odroid. (2015). http://www.hardkernel.com/. Accessed 1 Aug 2018.
  13. Karuppanan, P., & Mahapatra, K. K. (2012). PI and fuzzy logic controllers for shunt active power filtera report. ISA Transactions, 51(1), 163–169.CrossRefGoogle Scholar
  14. Kim, J., Jung, Y., Lee, D., & Shim, D. H. (2016). Landing control on a mobile platform for multi-copters using an omnidirectional image sensor. Journal of Intelligent & Robotic Systems, 84(1–4), 529–541.CrossRefGoogle Scholar
  15. Lee, D., Ryan, T., & Kim, H. J. (2012). Autonomous landing of a vtol UAV on a moving platform using image-based visual servoing. In 2012 IEEE international conference on robotics and automation (ICRA) (pp. 971–976). IEEE.Google Scholar
  16. Lee, H., Jung, S., & Shim, D. H. (2016). Vision-based UAV landing on the moving vehicle. In 2016 International conference on unmanned aircraft systems (ICUAS) (pp. 1–7). IEEE.Google Scholar
  17. Ma, Z., Wang, C., Niu, Y., Wang, X., & Shen, L. (2018). A saliency-based reinforcement learning approach for a UAV to avoid flying obstacles. Robotics and Autonomous Systems, 100, 108–118.CrossRefGoogle Scholar
  18. Maravall, D., de Lope, J., & Fuentes, J. P. (2015). Vision-based anticipatory controller for the autonomous navigation of an UAV using artificial neural networks. Neurocomputing, 151, 101–107.CrossRefGoogle Scholar
  19. Meier, L., Honegger, D., & Pollefeys, M. (2015). Px4: A node-based multithreaded open source robotics framework for deeply embedded platforms. In 2015 IEEE international conference on robotics and automation (ICRA) (pp. 6235–6240).  https://doi.org/10.1109/ICRA.2015.7140074.
  20. Meier, L., Tanskanen, P., Fraundorfer, F., & Pollefeys, M. (2011). The pixhawk open-source computer vision framework for mavs. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 38(1), C22.Google Scholar
  21. Moore, D. (2007). The basic practice of statistics. New York: W.H. Freeman. ISBN 9780716774631.Google Scholar
  22. Nex, F., & Remondino, F. (2014). Uav for 3d mapping applications: A review. Applied Geomatics, 6(1), 1–15.CrossRefGoogle Scholar
  23. Olivares-Mendez, M. A., Kannan, S., & Voos, H. (2015). Vision based fuzzy control autonomous landing with UAVs: From v-rep to real experiments. In 2015 23th Mediterranean conference on control and automation (MED) (pp. 14–21). IEEE.Google Scholar
  24. Pereira, G. A. S., Resende, G. D., & Gonçalves, V. M. (2018). Pouso de veículos aéreos utilizando campos vetoriais e visãocomputacional [Landing of aircraft using vector fields and computervision]. In XXII Congresso Brasileiro de Automatica. SBA.Google Scholar
  25. Precup, R.-E., & Hellendoorn, H. (2011). A survey on industrial applications of fuzzy control. Computers in Industry, 62(3), 213–226.CrossRefGoogle Scholar
  26. QGroundControl. Mavlink. (2016). http://qgroundcontrol.org/mavlink/start. Accessed 1 Aug 2018.
  27. Rathinam, S., Almeida, P., Kim, Z., Jackson, S., Tinka, A., Grossman, W., & Sengupta, R. (2007). Autonomous searching and tracking of a river using an uav. In American control conference, 2007. ACC’07 (pp. 359–364). IEEE.Google Scholar
  28. ROS. Robot operating system. (2015). www.ros.org/. Accessed 1 Aug 2018.
  29. Saska, M., Krajnik, T., & Pfeucil, L. (2012). Cooperative micro-UAV-UGV autonomous indoor surveillance. In International multi-conference on systems, signals and devices (pp. 1–6).Google Scholar
  30. Silva, N. B., Fontes, J. V., Inoue, R. S., & Branco, K. R. (2018). Dynamic inversion and gain-scheduling control for an autonomous aerial vehicle with multiple flight stages. Journal of Control, Automation and Electrical Systems, 29(3), 328–339.CrossRefGoogle Scholar
  31. Theodoridis, S., & Koutroumbas, K. (2008). Pattern recognition (4th ed.). Cambridge: Academic Press. ISBN 1597492728, 9781597492720.zbMATHGoogle Scholar
  32. Tyagi, K., & Sharma, A. (2014). An adaptive neuro fuzzy model for estimating the reliability of component-based software systems. Applied Computing and Informatics, 10(1–2), 38–51.CrossRefGoogle Scholar
  33. Wang, X. (2013). Takeoff/landing control based on acceleration measurements for vtol aircraft. Journal of the Franklin Institute, 350(10), 3045–3063.MathSciNetCrossRefzbMATHGoogle Scholar
  34. Wenzel, K. E., Masselli, A., & Zell, A. (2011). Automatic take off, tracking and landing of a miniature uav on a moving carrier vehicle. Journal of Intelligent and Robotic Systems, 61, 221–238.CrossRefGoogle Scholar
  35. Yang, S., Ying, J., Lu, Y., & Li, Z. (2015). Precise quadrotor autonomous landing with srukf vision perception. In 2015 IEEE international conference on robotics and automation (ICRA) (pp. 2196–2201). IEEE.Google Scholar

Copyright information

© Brazilian Society for Automatics--SBA 2019

Authors and Affiliations

  1. 1.Institute for Systems and Computer Engineering, Technology and ScienceFEUPPortoPortugal
  2. 2.Graduate Program in Electrical EngineeringUFJFJuiz de ForaBrazil
  3. 3.Graduate Program in Computational ModelingUFJFJuiz de ForaBrazil

Personalised recommendations