Simultaneous Observation of the Wheel Torque and Tire Force as well as the Vehicle Speeds

  • Mohamed OuahiEmail author
  • Abdelmjid Saka


Individual torques at each vehicle wheel are important intermediate variables for the design of Advanced Driver Assistance Systems, and their knowledge stays an interesting research problem. In this study, a nonlinear high-gain unknown inputs state observer is designed to compute simultaneously longitudinal and transversal tire forces, resultant torques applied to wheels and the vehicle speeds. The necessary measurements are the usual rotation speed. Having validated the model of knowledge using a realistic vehicle simulator, the observer is tested under the same conditions and shows good performances for the vehicle state, tire forces and the unknown torques reconstruction.


Vehicle dynamics Unknown input observer High gain Torque Tyres force 



  1. Burckhardt, M., & Reimpell, J. (1993). Fahrwerktechnik: Radschlupfregelsysteme. Wurzburg: Vogel-Verlag.Google Scholar
  2. Doumiati, M., Victorino, A., Charara, A., Lechner, D., & Baffet, G. (2008). An estimation process for vehicle wheel-ground contact normal forces. In IFAC, Seoul Korea.Google Scholar
  3. Doumiati, M., Victorino, A., Charara, A., & Lechner, D. (2009). Estimation of vehicle lateral tire-road forces: a comparison between extended and unscented kalman filtering. In European Control Conference - Budapest, Hungary.Google Scholar
  4. Falcone, P., Borrelli, F., Asgari, J., Tseng, H. E., & Hrovat, D. (2007). Predictive active steering control for autonomous vehicle systems. IEEE Transactions Control Systems Technology, 15(3), 566–580.CrossRefGoogle Scholar
  5. Fang, H., Dou, L., Chen, J., Lenain, R., Thuilot, B., & Martinet, P. (2011). Robust anti-sliding control of autonomous vehicles in presence of lateral disturbances. Control Engineering Practice, 19(5), 468–478.CrossRefGoogle Scholar
  6. Farza, M., M’Saad, M., & Sekher, M. (2005). A set of observers for a class of nonlinear systems. In Proceedings of the 16th IFAC World Congress, Praha, Czech Republic.Google Scholar
  7. Gauthier, J. P., Hammouri, H., & Othman, S. (1992). A simple observer for nonlinear systems—application to bioreactors. IEEE transactions on automatic control (Vol. 37).Google Scholar
  8. Gillespie, T. D. (1992). Fundamentals of vehicle dynamics. Warrendale: Society of Automotive Engineers Inc.CrossRefGoogle Scholar
  9. Hu, C., Jing, H., Wang, R., Yan, F., & Chadli, M. (2016). Robust \(h_{\infty }\) output-feedback control for path following of autonomous ground vehicles. Mechanical Systems and Signal Processing, 70(71), 414–427.CrossRefGoogle Scholar
  10. Kiencke, U., & Nielsen, L. (2000). Automotive control system. New York: Springer.Google Scholar
  11. Kou, S. R., Elliott, D. L., & Tarn, T. J. (1975). Exponential observers for nonlinear dynamic systems. Information and Control, 29, 204.MathSciNetCrossRefzbMATHGoogle Scholar
  12. Kreisselmeier, G., & Engel, R. (2003). Nonlinear observers for autonomous lipschitz continuous systems. IEEE Transactions on Automatic Control, 48, 451.MathSciNetCrossRefzbMATHGoogle Scholar
  13. Lechner, D., Delanne, Y., Schaefer, G., & Schmitt, V. (1997). Méthodologie de validation du logiciel de dynamique automobile callas. Ingénieurs de l’automobile, 9(713), 10–38.Google Scholar
  14. Li, L., Ran, X., Wu, K., Song, J., & Han, Z. (2015). A novel fuzzy logic correctional algorithm for traction control systems on uneven low-friction road conditions. Vehicle System Dynamics, 53(6), 711–733.CrossRefGoogle Scholar
  15. Liu, F., Farza, M., & M’Saad, M. (2006). Unknown inputs estimation for a class of nonlinear systems. In International symposium on communications, control and signal processing—Marrakech, Morocco.Google Scholar
  16. Mirzaei, M., & Mirzaeinejad, H. (2012). Optimal design of a non-linear controller for anti-lock braking system. Transportation Research Part C: Emerging Technologies, 24, 19–35.CrossRefGoogle Scholar
  17. M’Sirdi, N. K., Rabhi, A., Fridman, L., Davila, J., & Delanne, Y. (2008). Second order sliding-mode observer for estimation of vehicle dynamic parameters. International Journal of Vehicle Design, 48, 190–207.CrossRefGoogle Scholar
  18. Ouahi, M., Rabhi, A., & Elhajjaji, A. (2015). Tire force and wheel torque estimation using high gain observer. In International conference on systems and control, Hammamet, Tunisia.Google Scholar
  19. Ouahi, M., Stéphant, J., & Meizel, D. (2010). Simultaneous observation of inputs and state of wheeled vehicle model. In 7th IFAC symposium on intelligent autonomous vehicle (IAV) (Vol. 7), Lecce, Italy.Google Scholar
  20. Ouahi, M., Stéphant, J., & Meizel, D. (2011). Evaluation of torque observer in automotive context. In IFAC World Congress, Milan, Italy.Google Scholar
  21. Ouahi, M., Stéphant, J., & Meizel, D. (2013). Simultaneous observation of the wheels’ torques and the vehicle dynamic state. Vehicle System Dynamics, 51, 737–766.CrossRefGoogle Scholar
  22. Pacejka, H. B. (2002). Tyre and vehicle dynamics. Oxford: Elsevier Butterworth-Heinemann.Google Scholar
  23. Pfiffner, R., Guzzella, L., & Onder, C. H. (2003). Fuel-optimal control of cvt powertrains. Control Engineering Pratice, 11(3), 329–336.CrossRefGoogle Scholar
  24. Pyabongkarn, D. N., Lew, J. Y., Rajamani, R., & Grogg, J. A. (2010). Active driveline torque-management systems. IEEE Control Systems magazine, 30(4).Google Scholar
  25. Raghavan, S., & Hedrick, J. K. (1994). Observer design for a class of nonlinear systems. International Journal of Control, 59, 515.MathSciNetCrossRefzbMATHGoogle Scholar
  26. Ray, L. R. (1997). Nonlinear tire force estimation and road friction identification: Simulation and experiments. Automatica, 33(10), 1819–1833.MathSciNetCrossRefzbMATHGoogle Scholar
  27. Stéphant, J., Charara, A., & Meizel, D. (2007). Evaluation of a sliding mode observer for vehicle sideslip angle. Control Engineering Practice, 15, 803–812. Special Issue on Award Winning Applications, 2005 IFAC World Congress.CrossRefGoogle Scholar
  28. Thau, F. E. (1973). Observing the state of non-linear dynamic systems. International Journal of Control, 17, 471.CrossRefzbMATHGoogle Scholar
  29. Yang, R., Jing, H., Wang, J., Chadli, M., & Chen, N. (2016). Robust output-feedback based vehicle lateral motion control considering network-induced delay and tire force saturation. Neurocomputing, 214(19), 409–419.Google Scholar
  30. Yang, X., Wang, Z., & Peng, W. (2009). Coordinated control of afs and dyc for vehicle handling and stability based on optimal guaranteed cost theory. Vehicle System Dynamics, 47(1), 57–79.CrossRefGoogle Scholar
  31. Zhu, X., Zhang, H., Wang, J., & Fang, Z. (2015). Robust lateral motion control of electric ground vehicles with random network induced delays. IEEE Transactions on Vehicular Technology, 64(11), 4985–4995.CrossRefGoogle Scholar

Copyright information

© Brazilian Society for Automatics--SBA 2019

Authors and Affiliations

  1. 1.Laboratoire LISANational School of Applied SciencesFezMorocco

Personalised recommendations