Advertisement

Direct Design of Controllers Using Complementary State and State-Derivative Feedback

  • Fernanda Quelho RossiEmail author
  • Roberto Kawakami Harrop Galvão
  • Marcelo Carvalho Minhoto Teixeira
  • Edvaldo Assunção
Article
  • 19 Downloads

Abstract

This paper is concerned with controllers design using complementary state and state-derivative feedback, as an extension of the work presented in Rossi et al. (in: Proceedings of XXI Congresso Brasileiro de Automática, Vitória, Brazil, pp 828–833, 2016). The novel approach is more general, in that it enables the direct design of an CSSDF controller, dispensing with the need for a preliminary state feedback design. For this purpose, a discrete-time design model is derived to describe the plant dynamics in terms of the state and state-derivative combinations available for feedback. The resulting model can be used with existing discrete-time state-space methods for the design of linear or nonlinear control laws. Simulation examples are presented to illustrate the proposed design method within a model predictive control formulation.

Keywords

Complementary state and state-derivative feedback Direct design Discrete time Model predictive control 

Notes

Acknowledgements

The main theoretical results presented in this paper were developed as part of the first author’s Ph.D. research (Rossi 2018), which was funded by CNPq under Doctoral Scholarship 140585/2014-1. The remaining authors acknowledge the support of FAPESP under Grant 2011/ 17610-0 and CNPq under Grants 303714/2014-0, 310798/2014-0, 301227/2017-9 (Research Fellowships).

References

  1. Abdelaziz, T. H. S. (2012). Parametric eigenstructure assignment using state-derivative feedback for linear systems. Journal of Vibration and Control, 18(12), 1809–1827.MathSciNetCrossRefGoogle Scholar
  2. Abdelaziz, T. H. S., & Valášek, M. (2004). Pole-placement for SISO linear systems by state derivative feedback. IEE Proceedings: Control Theory and Applications, 151(4), 377–385.Google Scholar
  3. Assunção, E., Teixeira, M. C. M., Faria, F. A., Silva, N. A. P., & Cardim, R. (2007). Robust state derivative feedback LMI-based designs for multivariable linear systems. International Journal of Control, 80(8), 1260–1270.MathSciNetCrossRefzbMATHGoogle Scholar
  4. Cardim, R., Teixeira, M. C. M., Faria, F. A., & Assunção, E. (2009). LMI-based digital redesign of linear time invariant systems with state derivative feedback. In Proceedings of IEEE multi-conference of systems and control, Saint Petersburg, Russia, 8–10 July 2009 (pp. 745–749).Google Scholar
  5. Chua, L. O., Desoer, C. A., & Kuh, E. S. (1987). Linear and nonlinear circuits. New York: McGraw-Hill.zbMATHGoogle Scholar
  6. Duan, Y. F., Ni, Y. Q., & Ko, J. M. (2005). State-derivative feedback control of cable vibration using semiactive magnetorheological dampers. Computer-Aided Civil and Infrastructure Engineering, 20(6), 431–449.CrossRefGoogle Scholar
  7. Fallah, S., Khajepour, A., Fidan, B., Chen, S.-K., & Litkouhi, B. (2013). Vehicle optimal torque vectoring using state derivative feedback and linear matrix inequalities. IEEE Transactions on Vehicular Technology, 62(4), 1540–1552.CrossRefGoogle Scholar
  8. Faria, F. A., Assunção, E., Teixeira, M. C. M., Cardim, R., & Silva, N. A. P. (2009). Robust state derivative pole placement LMI-based designs for linear systems. International Journal of Control, 82(1), 1–12.MathSciNetCrossRefzbMATHGoogle Scholar
  9. Fleming, J., Kouvaritakis, B., & Cannon, M. (2015). Robust tube MPC for linear systems with multiplicative uncertainty. IEEE Transaction on Automatic Control, 60(4), 1087–1092.MathSciNetCrossRefzbMATHGoogle Scholar
  10. Franklin, G. F., Powell, J. D., & Workman, M. L. (1998). Digital control of dynamic systems (3rd ed.). Menlo Park, California: Addison Wesley.zbMATHGoogle Scholar
  11. Gautam, A., & Soh, Y. C. (2014). Constraint-softening in model predictive control with off-line-optimized admissible sets for systems with additive and multiplicative disturbances. Systems & Control Letters, 69, 65–72.MathSciNetCrossRefzbMATHGoogle Scholar
  12. Gilbert, E. G., & Tan, K. T. (1991). Linear systems with state and control constraints: The theory and application of maximal output admissible sets. IEEE Transactions on Automatic Control, 36(9), 1008–1020.MathSciNetCrossRefzbMATHGoogle Scholar
  13. Herceg, M., Kvasnica, M., Jones, C. N., & Morari, M. (2013). Multi-parametric toolbox 3.0. In Proceedings of the European control conference, Zürich, Switzerland, 17–19 July 2013 (pp. 502–510).Google Scholar
  14. Kwon, W. H., & Han, S. (2005). Receding horizon control. London: Springer.Google Scholar
  15. Lewis, F. L., & Syrmos, V. L. (1995). Optimal control (2nd ed.). New York: Wiley.Google Scholar
  16. Maciejowski, J. M. (2002). Predictive control with constraints. Harlow: Prentice Hall.zbMATHGoogle Scholar
  17. Olalla, C., Leyva, R., Aroudi, A. E., & Queinnec, I. (2009). Robust LQR control for PWM converters: An LMI approach. IEEE Transaction on Industrial Electronics, 56(7), 2548–2558.CrossRefGoogle Scholar
  18. Quanser (2003). Vibration control: Active mass damper—One floor (AMD-1). Student manual (4th ed.). Ontario, Canada: Quanser Consulting Inc.Google Scholar
  19. Rakovic, S. V., Kouvaritakis, B., Findeisen, R., & Cannon, M. (2012). Homothetic tube model predictive control. Automatica, 48(8), 1631–1638.MathSciNetCrossRefzbMATHGoogle Scholar
  20. Reithmeier, E., & Leitmann, G. (2003). Robust vibration control of dynamical systems based on the derivative of the state. Archive of Applied Mechanics, 72(11), 856–864.zbMATHGoogle Scholar
  21. Rossi, F. Q. (2018). Discrete-time design of control laws using state derivative feedback. Ph.D. thesis, Instituto Tecnológico de Aeronáutica, São José dos Campos, SP.Google Scholar
  22. Rossi, F. Q., Galvão, R. K. H., Teixeira, M. C. M., & Assunção, E. (2016). Discrete-time control design with complementary state and state-derivative feedback. In Proceedings of XXI Congresso Brasileiro de Automática, Vitória, Brazil, 03–07 October 2016 (pp. 828–833).Google Scholar
  23. Rossi, F. Q., Galvão, R. K. H., Teixeira, M. C. M., & Assunção, E. (2018). Direct discrete time design of robust state derivative feedback control laws. International Journal of Control, 91(1), 70–84.MathSciNetCrossRefzbMATHGoogle Scholar
  24. Rossi, F. Q., Teixeira, M. C. M., Galvão, R. K. H., & Assunção, E. (2013). Discrete time design of state derivative feedback control laws. In Proceedings of conference on control and fault-tolerant systems, Nice, France, 09–11 October 2013 (pp. 808–813).Google Scholar
  25. Rossiter, J. A. (2003). Model-based predictive control: A practical approach. Boca Raton: CRC Press.Google Scholar
  26. Silva, E. R. P., Assunção, E., Teixeira, M. C. M., & Buzachero, L. F. S. (2012). Less conservative control design for linear systems with polytopic uncertainties via state derivative feedback. Mathematical Problems in Engineering, 2012, 315049.MathSciNetzbMATHGoogle Scholar
  27. Silva, E. R. P., Assunção, E., Teixeira, M. C. M., & Cardim, R. (2013). Robust controller implementation via state derivative feedback in an active suspension system subject to fault. In Proceedings of conference on control and fault-tolerant systems, Nice, France, 9–11 October 2013 (pp. 752–757).Google Scholar
  28. Tseng, Y. W., & Hsieh, J. G. (2013). Optimal control for a family of systems in novel state derivative space form with experiment in a double inverted pendulum system. Abstract and Applied Analysis, 715026, 8.MathSciNetGoogle Scholar
  29. Zeilinger, M. N., Morari, M., & Jones, C. N. (2014). Soft constrained model predictive control with robust stability guarantees. IEEE Transactions on Automatic Control, 59(5), 1190–1202.MathSciNetCrossRefzbMATHGoogle Scholar
  30. Zhang, J., Ouyang, H., & Yang, J. (2014). Partial eigenstructure assignment for undamped vibration systems using acceleration and displacement feedback. Journal of Sound and Vibration, 333(1), 1–12.CrossRefGoogle Scholar
  31. Zhang, J., Ye, J., & Ouyang, H. (2016). Static output feedback for partial eigenstructure assignment of undamped vibration systems. Mechanical Systems and Signal Processing, 68–69(2016), 555–561.CrossRefGoogle Scholar

Copyright information

© Brazilian Society for Automatics--SBA 2019

Authors and Affiliations

  1. 1.Divisão de Engenharia EletrônicaInstituto Tecnológico de AeronáuticaSão José dos CamposBrazil
  2. 2.Departamento de Engenharia Elétrica, School of EngineeringSão Paulo State University (UNESP)Ilha SolteiraBrazil

Personalised recommendations