Robust Observer-Based Actuator and Sensor Fault Estimation for Discrete-Time Systems

  • Emanoel R. Q. ChavesJr.Email author
  • André F. O. de A. Dantas
  • André L. Maitelli


In this paper, a robust fault estimation method based on unknown input observer (UIO) is proposed to estimate states, actuator and sensor faults simultaneously in a discrete-time system. The UIO is designed by using an \(H_\infty \) technique, which is developed to both maintain the estimation error stable and reduce the disturbances that cannot be decoupled. In the first part of this paper, the observer is addressed for discrete-time linear systems subjected to sensor noise and process disturbances. In sequence, the method is extended to handle Lipschitz nonlinear systems. The proposed method is validated through two numerical examples, and a comparison between the proposed techniques and Extended Kalman Filter is presented. The results show the proposed approach as a better observer in terms of state and fault estimation, and process disturbance and sensor noise rejection.


Fault estimation Discrete-time system Robust control Linear matrix inequality (LMI) Unknown input observer (UIO) 



This work is supported by the Coordination for the Improvement of Higher Education Personnel—CAPES—and the Laboratory of Automation in Petroleum—LAUT/DCA/UFRN.


  1. Boyd, S., Ghaoui, L. E., Feron, E., & Balakrishnan, V. (1994). Linear matrix inequalities in system and control theory. Philadelphia: SIAM.CrossRefzbMATHGoogle Scholar
  2. Cao, S., Guo, L., & Wen, X. (2011). Fault tolerant control with disturbance rejection and attenuation performance for systems with multiple disturbances. Asian Journal of Control, 13(6), 1056–1064.MathSciNetCrossRefzbMATHGoogle Scholar
  3. Chen, J., Patton, R. J., & Zhang, H. Y. (1996). Design of unknown input observers and robust fault detection filters. International Journal of Control, 63(1), 85–105.MathSciNetCrossRefzbMATHGoogle Scholar
  4. Chen, L., Huang, X., & Liu, M. (2018). Observer-based piecewise fault-tolerant control for discrete-time nonlinear dynamic systems. Asian Journal of Control, 19, 2051–2061.MathSciNetCrossRefzbMATHGoogle Scholar
  5. Chen, W., & Saif, M. (2007). A sliding mode observer-based strategy for fault detection, isolation, and estimation in a class of Lipschitz nonlinear systems. International Journal of Systems Science, 38(12), 943–955.MathSciNetCrossRefzbMATHGoogle Scholar
  6. Edwards, C., & Tan, C. P. (2006). A comparison of sliding mode and unknown input observers for fault reconstruction (Vol. 12). Amsterdam: Elsevier.zbMATHGoogle Scholar
  7. Gao, Z. (2015). Fault estimation and fault-tolerant control for discrete-time dynamic systems. IEEE Transactions on Industrial Electronics, 62(6), 3874–3884.Google Scholar
  8. Gao, Z., Liu, X., & Chen, M. Z. (2016). Unknown input observer-based robust fault estimation for systems corrupted by partially decoupled disturbances. IEEE Transactions on Industrial Electronics, 63(4), 2537–2547.Google Scholar
  9. Gu, Y., & Yang, G. H. (2018). Simultaneous actuator and sensor fault estimation for discrete-time Lipschitz nonlinear systems in finite-frequency domain. Optimal Control Applications and Methods, 39(1), 410–423.MathSciNetCrossRefzbMATHGoogle Scholar
  10. Hmida, F. B., Khémiri, K., Ragot, J., & Gossa, M. (2012). Three-stage Kalman filter for state and fault estimation of linear stochastic systems with unknown inputs. Journal of the Franklin Institute, 349(7), 2369–2388.MathSciNetCrossRefzbMATHGoogle Scholar
  11. Hsu, P. L., Houng, Y. C., & Yeh, S. S. (2001). Design of an optimal unknown input observer for load compensation in motion systems. Asian Journal of Control, 3(3), 204–215.CrossRefGoogle Scholar
  12. Jia, Q., Li, H., Zhang, Y., & Chen, X. (2015). Robust observer-based sensor fault reconstruction for discrete-time systems via a descriptor system approach. International Journal of Control, Automation, and Systems, 13(2), 274.CrossRefGoogle Scholar
  13. Jiang, B., & Chowdhury, F. N. (2005). Fault estimation and accommodation for linear mimo discrete-time systems. IEEE Transactions on Control Systems Technology, 13(3), 493–499.CrossRefGoogle Scholar
  14. Li, H., & Fu, M. (1997). A linear matrix inequality approach to robust \(\cal{H}_\infty \) filtering. IEEE Transactions on Signal Processing, 45(9), 2338–2350.CrossRefGoogle Scholar
  15. Li, J., Gao, H. W., Zhang, P., & Huang, D. R. (2012). Fault diagnosis and optimal fault-tolerant control for systems with delayed measurements and states. International Journal of Control, Automation and Systems, 10(1), 150–157.CrossRefGoogle Scholar
  16. Li, L., Jia, Y., Du, J., & Yuan, S. (2008). Robust \(l_2 - l_{\infty }\) control for uncertain singular systems with time-varying delay. Progress in Natural science, 18(8), 1015–1021.MathSciNetCrossRefGoogle Scholar
  17. Li, Z., Peng, T., & fei Zhang P, Han H, Yang J,. (2016). Fault diagnosis and fault-tolerant control of photovoltaic micro-inverter. Journal of Central South University, 23(9), 2284–2295.Google Scholar
  18. Meskin, N., & Khorasani, K. (2010). A geometric approach to fault detection and isolation of continuous-time Markovian jump linear systems. IEEE Transactions on Automatic Control, 55(6), 1343–1357.MathSciNetCrossRefzbMATHGoogle Scholar
  19. Mondal, S., Chakraborty, G., & Bhattacharyy, K. (2010). LMI approach to robust unknown input observer design for continuous systems with noise and uncertainties. International Journal of control, Automation and systems, 8(2), 210–219.CrossRefGoogle Scholar
  20. Noura, H., Theilliol, D., Ponsart, J. C., & Chamseddine, A. (2009). Fault-tolerant control systems: Design and practical applications. New York: Springer.CrossRefzbMATHGoogle Scholar
  21. Patton, R. J., & Chen, J. (1997). Observer-based fault detection and isolation: Robustness and applications. Control Engineering Practice, 5(5), 671–682.CrossRefGoogle Scholar
  22. Persis, C. D., & Isidori, A. (2001). A geometric approach to nonlinear fault detection and isolation. IEEE Transactions on Automatic Control, 46(6), 853–865.MathSciNetCrossRefzbMATHGoogle Scholar
  23. Reppa, V., Polycarpou, M. M., & Panayiotou, C. G. (2014). Adaptive approximation for multiple sensor fault detection and isolation of nonlinear uncertain systems. IEEE Transactions on Neural Networks and Learning Systems, 25(1), 137–153.CrossRefGoogle Scholar
  24. Rotondo, D., Witczak, M., Puig, V., Nejjari, F., & Pazera, M. (2016). Robust unknown input observer for state and fault estimation in discrete-time Takagi–Sugeno systems. International Journal of Systems Science, 47(14), 3409–3424.MathSciNetCrossRefzbMATHGoogle Scholar
  25. Van, M., Kang, H. J., & Suh, Y. S. (2013). A novel neural second-order sliding mode observer for robust fault diagnosis in robot manipulators. International Journal of Precision Engineering and Manufacturing, 14(3), 397–406.CrossRefGoogle Scholar
  26. Vu, V. P., Wang, W. J., Zurada, J. M., Chen, H. C., & Chiu, C. H. (2017). Unknown input method based observer synthesis for a discrete time uncertain T–S fuzzy system. IEEE Transactions on Fuzzy Systems, 26, 761–770.CrossRefGoogle Scholar
  27. Wen, X., Zhang, X., & Zhu, Y. (2015). Design of fault detection observer based on hyper basis function. Tsinghua Science and Technology, 20(2), 200–204.CrossRefGoogle Scholar
  28. Witczak, M., Buciakowski, M., Puig, V., Rotondo, D., & Nejjari, F. (2016). A lMI approach to robust fault estimation for a class of nonlinear systems. International Journal of Robust and Nonlinear Control, 26(7), 1530–1548.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Brazilian Society for Automatics--SBA 2019

Authors and Affiliations

  1. 1.Department of Computer Engineering and AutomationFederal University of Rio Grande do Norte - UFRNNatalBrazil
  2. 2.Potiguar University - UnPNatalBrazil

Personalised recommendations