Advertisement

Acta Mathematica Vietnamica

, Volume 44, Issue 4, pp 923–934 | Cite as

On Properties of Expansive Group Actions

  • Ali Barzanouni
  • Mahin Sadat Divandar
  • Ekta ShahEmail author
Article
  • 44 Downloads

Abstract

We study several properties of expansive group actions on metric spaces and obtain some relations between the expansivity for subgroup and group actions. Through counter examples, the necessity of hypothesis is justified. We also study the expansivity of covering maps. Further, we define orbit expansivity for group actions on topological spaces and use it to characterize expansive actions.

Keywords

Orbit expansive homeomorphism Expansive group actions Syndetic set Subgroups 

Mathematics Subject Classification (2010)

37C85 37C50 37C75 54H20 

Notes

Acknowledgements

Authors takes this opportunity to thank the referee(s) for his or her valuable comments.

References

  1. 1.
    Aoki, N., Hiraide, K.: Topological Theory of Dynamical Systems. North-Holland, Mathematical Library, vol. 52. North-Holland Publishing Co., Amsterdam (1994)Google Scholar
  2. 2.
    Achigar, M., Artigue, A., Monteverde, I.: Expansive homeomorphisms on non-Hausdorff spaces. Topol. Appl. 207, 109–122 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Barzanouni, A.: Shadowing property on finitely generated group actions. J. Dyn. Syst. Geom. Theor. 12(1), 69–79 (2014)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Bryant, B.F.: Expansive self-homeomorphisms of a compact metric space. Am. Math. Monthly 69(5), 386–391 (1962)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Chung, N.P., Lee, K.: Topological stability and pseudo-orbit tracing property of group actions. Proc. Am. Math. Soc. 146(3), 1047–1057 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Das, R.: Expansive self-homeomorphisms on G-spaces. Period. Math. Hungar. 31(2), 123–130 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Das, T., Lee, K., Richeson, D., Wiseman, J.: Spectral decomposition for topologically Anosov homeomorphisms on noncompact and non-metrizable spaces. Topol. Appl. 160(1), 149–158 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Hurder, S.: Dynamics of expansive group actions on the circle. PreprintGoogle Scholar
  9. 9.
    Kato, H.: Continuum-wise expansive homeomorphisms. Can. J. Math. 45(3), 576–598 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Meddaugh, J., Raines, B.: The structure of limit sets for \(\mathbb Z^{d}\)-actions. Discrete Contin. Dyn. Syst. 34(11), 4765–4780 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Osipov, A.V., Tikhomirov, S.B.: Shadowing for actions of some finitely generated groups. Dyn. Syst. 29(3), 337–351 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Oprocha, P.: Chain recurrence in multidimensional time discrete dynamical systems. Discrete Contin. Dyn. Syst. 20(4), 1039–1056 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Pacificio, M.J., Vieitez, J.L.: On measure expansive diffeomorphisms. Proc. Am. Math. Soc. 143(2), 811–819 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Shah, S., Das, R.: On collective sensitivity for \(\mathbb Z^{d}\)-actions. Dyn. Syst. 31(2), 221–227 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Shi, E., Sun, B.: Fixed point properties of nilpotent group actions on 1-arcwise connected continua. Proc. Am. Math. Soc. 137(2), 771–775 (2009)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Institute of Mathematics, Vietnam Academy of Science and Technology (VAST) and Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Mathematics, School of Mathematical SciencesHakim Sabzevari UniversitySabzevarIran
  2. 2.Department of Mathematics, Faculty of ScienceThe Maharaja Sayajirao University of BarodaVadodaraIndia

Personalised recommendations