Advertisement

Acta Mathematica Vietnamica

, Volume 44, Issue 4, pp 935–953 | Cite as

Two Strong Convergence Theorems for the Common Null Point Problem in Banach Spaces

  • Truong Minh TuyenEmail author
  • Nguyen Minh Trang
Article
  • 23 Downloads

Abstract

In this paper, we study the common null point problem in Banach spaces. Then, using the shrinking projection method and ε-enlargement of maximal monotone operator, we prove two strong convergence theorems with nonsummable errors for solving this problem.

Keywords

Split common null point problem Maximal monotone operator Metric resolvent ε-enlargement 

Mathematics Subject Classification (2010)

47H05 47H09 47J25 

Notes

Acknowledgements

The authors would like to thank the referees and the editor for the valuable comments and suggestions, which helped to improve this paper.

References

  1. 1.
    Agarwal, R.P., O’Regan, D., Sahu, D.R.: Fixed Point Theory for Lipschitzian-Type Mappings with Applications Topological Fixed 1 2 and its 5, vol. 6. Springer, New York (2009)Google Scholar
  2. 2.
    Alber, Y.I.: Metric and Generalized Projections in Banach Spaces: Properties and Applications. Theory and Applications of Nonlinear Operators of Accretive and Monotone Type, 15–50. Lecture Notes in Pure and Appl Math., vol. 178. Dekker, New York (1996)Google Scholar
  3. 3.
    Alber, Y.I., Reich, S.: An iterative method for solving a class of nonlinear operator in Banach spaces. Panamer. Math. J. 4(2), 39–54 (1994)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Alvarez, F.: On the minimizing property of a second order dissipative system in Hilbert spaces. SIAM J. Control Optim. 38(4), 1102–1119 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bauschke, H.H., Borwein, J.M., Combettes, P.L.: Bregman monotone optimization algorithms. SIAM J. Control Optim. 42(2), 596–636 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bauschke, H.H., Combettes, P.L.: Construction of best Bregman approximations in reflexive Banach spaces. Proc. Am. Math. Soc. 131(12), 3757–3766 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Bauschke, H.H., Matoušková, E., Reich, S.: Projection and proximal point methods: convergence results and counterexamples. Nonlinear Anal. 56(5), 715–738 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Beer, G.: Topologies on Closed and 1 Convex Sets Mathematics and Its Applications, vol. 268. Kluwer, Dordrecht (1993)CrossRefGoogle Scholar
  9. 9.
    Browder, F.E.: Nonlinear maximal monotone operators in Banach space. Math. Ann. 175, 89–113 (1968)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Burachik, R.S., Iusem, A.N., Svaiter, B.F.: Enlargement of monotone operators with applications to variational inequalities. Set-Valued Anal. 5(2), 159–180 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Burachik, R.S., Svaiter, B.F.: ε-enlargements of maximal monotone operators in Banach spaces. Set-Valued Anal. 7(2), 117–132 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Cioranescu, I.: Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems Mathematics and Its Applications, vol. 62. Kluwer, Dordrecht (1990)Google Scholar
  13. 13.
    Dadashi, V.: Shrinking projection algorithms for the split common null point problem. Bull. Aust. Math. Soc. 96(2), 299–306 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Goebel, K., Kirk, W.A.: Topics in Metric Fixed Point Theory. Cambridge Stud. Adv Math, vol. 28. Cambridge Univ. Press, Cambridge (1990)CrossRefGoogle Scholar
  15. 15.
    Güler, O.: On the convergence of the proximal point algorithm for convex minimization. SIAM J. Control Optim. 29(2), 403–419 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Kamimura, S., Takahashi, W.: Strong convergence of a proximal-type algorithm in a Banach space. SIAM J. Optim. 13(3), 938–945 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Kimura, Y., Takahashi, W.: On a hybrid method for a family of relatively nonexpansive mappings in a Banach space. J. Math. Anal. Appl. 357(2), 356–363 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Kimura, Y.: A shrinking projection method for nonexpansive mappings with nonsummable errors in a Hadamard space. Ann. Oper. Res. 243(1-2), 89–94 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Martinet, B.: Régularisation d’inéquations variationnelles par approximations successives. Rev. Franç,aise Informat. Recherche Opérationnalle 4(Sér. R-3), 154–158 (1970)zbMATHGoogle Scholar
  20. 20.
    Mosco, U.: Convergence of convex sets and of solutions of variational inequalities. Adv. Math. 3, 510–585 (1969)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Moudafi, A., Elisabeth, E.: An approximate inertial proximal method using the enlargement of a maximal monotone operator. Int. J. Pure Appl. Math. 5(3), 283–299 (2003)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Qin, X., Cho, S.Y., Kang, S.M.: Strong convergence of shrinking projection methods for quasi−nonexpansive mappings and equilibrium problems. J. Comput. Appl. Math. 234(3), 750–760 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Reich, S.: Book review: Geometry of Banach spaces, duality mappings and nonlinear problems. Bull. Am. Math. Soc. 26(2), 367–370 (1992)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Solodov, M.V., Svaiter, B.F.: A hybrid approximate extragradient-proximal point algorithm using the enlargement of a maximal monotone operator. Set-Valued Anal. 7 (4), 7323–345 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Solodov, M.V., Svaiter, B.F.: A hybrid projection-proximal point algorithm. J. Convex Anal. 6(1), 59–70 (1999)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Solodov, M.V., Svaiter, B.F.: Forcing strong convergence of proximal point iterations in Hilbert space. Math. Progam. 87(1), 189–202 (2000). Ser. AMathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Rockafellar, R.T.: On the maximal monotonicity of subdifferential mappings. Pacific. J. Math. 33, 209–216 (1970)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Rockafellar, R.T.: On the maximality of sums of nonlinear monotone operators. Trans. Am. Math. Soc. 149, 75–88 (1970)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14(5), 887–898 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Takahashi, S., Takahashi, W.: The split common null point problem and the shrinking projection method in Banach spaces. Optimization 65(2), 1–7 (2015)MathSciNetzbMATHGoogle Scholar
  31. 31.
    Takahashi, W.: Convex Analysis and Approximation of Fixed Points. Yokohama Publishers, Yokohama (2000)zbMATHGoogle Scholar
  32. 32.
    Takahashi, W., Takeuchi, Y., Kubota, R.: Strong convergence theorems by hybrid methods for families of nonexpansive mappings in Hilbert spaces. J. Math. Anal. Appl. 341(1), 276–286 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Takahashi, W.: The split feasibility problem and the shrinking projection method in Banach spaces. J. Nonlinear Anal. Convex 16(7), 1449–1459 (2015)MathSciNetzbMATHGoogle Scholar
  34. 34.
    Takahashi, W., Wen, C.-F., Yao, J.-C.: Strong convergence theorem by shrinking projection method for new nonlinear mappings in Banach spaces and applications. Optimization 66(4), 609–621 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Tsukada, M.: Convergence of best approximations in a smooth Banach space. J. Approx. Theory 40(4), 301–309 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Xu, H.K.: Inequalities in Banach spaces with applications. Nonlinear Anal. 16 (12), 1127–1138 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Saewan, S., Kumam, P.: The shrinking projection method for solving generalized equilibrium problems and common fixed points for asymptotically quasi-nonexpansive mappings. Fixed Point Theory Appl. 2011(9), 25 (2011)MathSciNetzbMATHGoogle Scholar

Copyright information

© Institute of Mathematics, Vietnam Academy of Science and Technology (VAST) and Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Thai Nguyen University of ScienceThai NguyenVietnam
  2. 2.Thai Nguyen University of TechnologyThai NguyenVietnam

Personalised recommendations