Advertisement

Robust Equilibrium in Transportation Networks

  • Nguyen Ba MinhEmail author
  • Truong Thi Thanh Phuong
Article
  • 4 Downloads

Abstract

We introduce the concept of robust equilibrium in a multi-criteria transportation network and obtain a formula to compute the radius of robustness together with an algorithm to find robust equilibrium flows.

Keywords

Multi-criteria transportation network Vector equilibrium Robust vector equilibrium Variational inequalities 

Mathematics Subject Classification (2010)

90B10 90C29 

Notes

Funding Information

The research of the first author is supported by the program Nr.30/QD-HDQL-NAFOSTED, Code 101.02-2016.11.

References

  1. 1.
    Bagirov, A.M., Al Nuaimat, A., Sultanova, N.: Hyperbolic smoothing function method for minimax problems. Optimization 62(6), 759–782 (2013)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Ben-Tal, A., El Ghaoui, L., Nemirovski, A.: Robust Optimization. Princeton Series in Applied Mathematics. Princeton University Press, Princeton (2009)zbMATHGoogle Scholar
  3. 3.
    Chen, G.Y., Goh, C.J., Yang, X.Q.: Vector network equilibrium problems and nonlinear scalarization methods. Math. Methods Oper. Res. 49(2), 239–253 (1999)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Chen, G.Y., Yen, N.D.: On the Variational Inequality Model for Network Equilibrium Internal Report 3.196, vol. 724. Department of Mathematics, University of Pisa, Pisa (1993)Google Scholar
  5. 5.
    Dafermos, S.: A Multicrieria Route-mode Choice Traffic Equilibrium Model. Lefschetz Center for Dynamical Systems, Brown University, Providence (1981)Google Scholar
  6. 6.
    Dial, R.B.: A model and algorithms for multi-criteria route-mode choice. Transp. Res. B Methodol. 13(4), 311–316 (1979)Google Scholar
  7. 7.
    Cao, F., Du, D.Z., Gao, B., Wan, P.J., Pardalos, P.M.: Minimax Problems in Combinatorical Optimization. Minimax and Applications, 269–292. Nonconvex Optim Appl., vol. 4. Kluwer Acad. Publ., Dordrecht (1995)Google Scholar
  8. 8.
    Ehrgott, M., Wang, J.Y.T., Watling, D.P.: On multi-objective stochastic user equilibrium. Transp. Res. B Methodol. 81(Part 3), 704–717 (2015)Google Scholar
  9. 9.
    Goh, C.J., Yang, X.Q.: Vector equilibrium problem and vector optimization. European J. Oper. Res. 116(3), 615–628 (1999)zbMATHGoogle Scholar
  10. 10.
    Li, S., Chen, G.: Multiclass, two-criteria traffic network equilibrium models and vector variational inequalities. Syst. Eng. Theory Pract. 28(1), 141–145 (2008)MathSciNetGoogle Scholar
  11. 11.
    Lin, Z.: On existence of vector equilibrium flows with capacity constraints of arcs. Nonlinear Anal. 72(3–4), 2076–2079 (2010)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Luc, D.T.: Multi-product supply demand networks with elementary flows. Acta. Math. Vietnam. 36(2), 299–317 (2011)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Luc, D.T., Rocca, M., Papalia, M.: Equilibrium in a vector supply-demand network with capacity constraints. Appl. Anal. 90(6), 1029–1045 (2011)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Luc, D.T., Phuong, T.T.T.: Equilibrium in multi-criteria transportation networks. J. Optim. Theory Appl. 169(1), 116–147 (2016)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Nagurney, A.: A multiclass, multicriteria traffic network equilibrium model. Math. Comput. Model. 32(3–4), 393–411 (2000)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Nagurney, A., Dong, J.: A multiclass, multicriteria traffic network equilibrium model with elastic demand. Transp. Res. B Methodol. 36(5), 445–469 (2002)Google Scholar
  17. 17.
    Oettli, W.: Necessary and Sufficient Conditions of Wardrop Type for Vectorial Traffic Equilibria. Equilibrium Problems: Nonsmooth Optimization and Variational Inequality Models, 223–229 Nonconvex Optimization and Applications, vol. 58. Kluwer Acad. Publ., Dordrecht (2001)Google Scholar
  18. 18.
    Patriksson, M.: Sensitivity analysis of traffic equilibria. Trans. Sci. 38(3), 258–281 (2004)Google Scholar
  19. 19.
    Phuong, T.T.T., Luc, D.T.: Equilibrium in multi-criteria supply and demand networks with capacity constraints. Math. Methods Oper. Res. 81(1), 83–107 (2015)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Polyak, R.A.: Smooth optimization methods for minimax problems. SIAM J. Control Optim. 26(6), 1274–1286 (1988)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Quandt, R.E.: A probabilistic abstract mode model. In: Studies in Travel Demand VIII, pp. 127–149. Mathematica, Inc., Princeton (1967)Google Scholar
  22. 22.
    Raciti, F.: Equilibrium conditions and vector variational inequalities: a complex relation. J. Global Optim. 40(1–3), 353–360 (2008)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Raith, A., Ehrgott, M.: On vector equilibria, vector optimization and vector variational inequalities. J. Multi-Criteria Decis. Anal. 18(1–2), 39–54 (2011)Google Scholar
  24. 24.
    Raith, A., Wang, J.Y.T., Ehrgott, M., Mitchell, S.A.: Solving multi-objective traffic assignment. Ann. Oer. Res. 222, 483–516 (2014)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Royset, J.O., Polak, E., Der Kiureghian, A.: Adaptive approximations and exact penalization for the solution of generalized semi-infinite min-max problems. SIAM J. Optim. 14(1), 1–33 (2003)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Schneider, M.: Access and land development, Urban Development Models. Highway Research Board Special Report 97, 164–177 (1968)Google Scholar
  27. 27.
    Tan, Z., Yang, H., Guo, R.: Pareto efficiency of reliability-based traffic equilibria and risk-taking behavior of travelers. Transp. Res. B Methodol. 66, 16–31 (2014)Google Scholar
  28. 28.
    Tian, X.Q., Xu, Y.D.: Traffic network equilibrium problems with capacity constraints of arcs and linear scalarization methods. J. Appl. Math. 2012, Article ID 612142, 12Google Scholar
  29. 29.
    Wang, J.Y.T., Ehrgott, M.: Modeling route choice behavior in a tolled road network with a time surplus maximisation bi-objective user equilibrium model. Transp. Res. B Methodol. 57, 342–360 (2013)Google Scholar

Copyright information

© Institute of Mathematics, Vietnam Academy of Science and Technology (VAST) and Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Thuongmai UniversityHanoiVietnam
  2. 2.Quy Nhon UniversityBinh DinhVietnam

Personalised recommendations