Robust Equilibrium in Transportation Networks

  • Nguyen Ba MinhEmail author
  • Truong Thi Thanh Phuong


We introduce the concept of robust equilibrium in a multi-criteria transportation network and obtain a formula to compute the radius of robustness together with an algorithm to find robust equilibrium flows.


Multi-criteria transportation network Vector equilibrium Robust vector equilibrium Variational inequalities 

Mathematics Subject Classification (2010)

90B10 90C29 


Funding Information

The research of the first author is supported by the program Nr.30/QD-HDQL-NAFOSTED, Code 101.02-2016.11.


  1. 1.
    Bagirov, A.M., Al Nuaimat, A., Sultanova, N.: Hyperbolic smoothing function method for minimax problems. Optimization 62(6), 759–782 (2013)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Ben-Tal, A., El Ghaoui, L., Nemirovski, A.: Robust Optimization. Princeton Series in Applied Mathematics. Princeton University Press, Princeton (2009)zbMATHGoogle Scholar
  3. 3.
    Chen, G.Y., Goh, C.J., Yang, X.Q.: Vector network equilibrium problems and nonlinear scalarization methods. Math. Methods Oper. Res. 49(2), 239–253 (1999)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Chen, G.Y., Yen, N.D.: On the Variational Inequality Model for Network Equilibrium Internal Report 3.196, vol. 724. Department of Mathematics, University of Pisa, Pisa (1993)Google Scholar
  5. 5.
    Dafermos, S.: A Multicrieria Route-mode Choice Traffic Equilibrium Model. Lefschetz Center for Dynamical Systems, Brown University, Providence (1981)Google Scholar
  6. 6.
    Dial, R.B.: A model and algorithms for multi-criteria route-mode choice. Transp. Res. B Methodol. 13(4), 311–316 (1979)Google Scholar
  7. 7.
    Cao, F., Du, D.Z., Gao, B., Wan, P.J., Pardalos, P.M.: Minimax Problems in Combinatorical Optimization. Minimax and Applications, 269–292. Nonconvex Optim Appl., vol. 4. Kluwer Acad. Publ., Dordrecht (1995)Google Scholar
  8. 8.
    Ehrgott, M., Wang, J.Y.T., Watling, D.P.: On multi-objective stochastic user equilibrium. Transp. Res. B Methodol. 81(Part 3), 704–717 (2015)Google Scholar
  9. 9.
    Goh, C.J., Yang, X.Q.: Vector equilibrium problem and vector optimization. European J. Oper. Res. 116(3), 615–628 (1999)zbMATHGoogle Scholar
  10. 10.
    Li, S., Chen, G.: Multiclass, two-criteria traffic network equilibrium models and vector variational inequalities. Syst. Eng. Theory Pract. 28(1), 141–145 (2008)MathSciNetGoogle Scholar
  11. 11.
    Lin, Z.: On existence of vector equilibrium flows with capacity constraints of arcs. Nonlinear Anal. 72(3–4), 2076–2079 (2010)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Luc, D.T.: Multi-product supply demand networks with elementary flows. Acta. Math. Vietnam. 36(2), 299–317 (2011)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Luc, D.T., Rocca, M., Papalia, M.: Equilibrium in a vector supply-demand network with capacity constraints. Appl. Anal. 90(6), 1029–1045 (2011)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Luc, D.T., Phuong, T.T.T.: Equilibrium in multi-criteria transportation networks. J. Optim. Theory Appl. 169(1), 116–147 (2016)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Nagurney, A.: A multiclass, multicriteria traffic network equilibrium model. Math. Comput. Model. 32(3–4), 393–411 (2000)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Nagurney, A., Dong, J.: A multiclass, multicriteria traffic network equilibrium model with elastic demand. Transp. Res. B Methodol. 36(5), 445–469 (2002)Google Scholar
  17. 17.
    Oettli, W.: Necessary and Sufficient Conditions of Wardrop Type for Vectorial Traffic Equilibria. Equilibrium Problems: Nonsmooth Optimization and Variational Inequality Models, 223–229 Nonconvex Optimization and Applications, vol. 58. Kluwer Acad. Publ., Dordrecht (2001)Google Scholar
  18. 18.
    Patriksson, M.: Sensitivity analysis of traffic equilibria. Trans. Sci. 38(3), 258–281 (2004)Google Scholar
  19. 19.
    Phuong, T.T.T., Luc, D.T.: Equilibrium in multi-criteria supply and demand networks with capacity constraints. Math. Methods Oper. Res. 81(1), 83–107 (2015)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Polyak, R.A.: Smooth optimization methods for minimax problems. SIAM J. Control Optim. 26(6), 1274–1286 (1988)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Quandt, R.E.: A probabilistic abstract mode model. In: Studies in Travel Demand VIII, pp. 127–149. Mathematica, Inc., Princeton (1967)Google Scholar
  22. 22.
    Raciti, F.: Equilibrium conditions and vector variational inequalities: a complex relation. J. Global Optim. 40(1–3), 353–360 (2008)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Raith, A., Ehrgott, M.: On vector equilibria, vector optimization and vector variational inequalities. J. Multi-Criteria Decis. Anal. 18(1–2), 39–54 (2011)Google Scholar
  24. 24.
    Raith, A., Wang, J.Y.T., Ehrgott, M., Mitchell, S.A.: Solving multi-objective traffic assignment. Ann. Oer. Res. 222, 483–516 (2014)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Royset, J.O., Polak, E., Der Kiureghian, A.: Adaptive approximations and exact penalization for the solution of generalized semi-infinite min-max problems. SIAM J. Optim. 14(1), 1–33 (2003)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Schneider, M.: Access and land development, Urban Development Models. Highway Research Board Special Report 97, 164–177 (1968)Google Scholar
  27. 27.
    Tan, Z., Yang, H., Guo, R.: Pareto efficiency of reliability-based traffic equilibria and risk-taking behavior of travelers. Transp. Res. B Methodol. 66, 16–31 (2014)Google Scholar
  28. 28.
    Tian, X.Q., Xu, Y.D.: Traffic network equilibrium problems with capacity constraints of arcs and linear scalarization methods. J. Appl. Math. 2012, Article ID 612142, 12Google Scholar
  29. 29.
    Wang, J.Y.T., Ehrgott, M.: Modeling route choice behavior in a tolled road network with a time surplus maximisation bi-objective user equilibrium model. Transp. Res. B Methodol. 57, 342–360 (2013)Google Scholar

Copyright information

© Institute of Mathematics, Vietnam Academy of Science and Technology (VAST) and Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Thuongmai UniversityHanoiVietnam
  2. 2.Quy Nhon UniversityBinh DinhVietnam

Personalised recommendations