Advertisement

Le Van Thiem—the Founder of Contemporary Mathematics in Vietnam

  • Ha Huy KhoaiEmail author
Article
  • 8 Downloads

Abstract

We give a brief biography of Le Van Thiem and a survey on his contributions in mathematics and for the development of mathematics in Vietnam.

Keywords

Contemporary Mathematics in Vietnam Le Van Thiem’s biography Nevanlinna theory 

Mathematics Subject Classification (2010)

30D35 01A70 

Notes

Funding Information

This research is funded by VIASM and by the Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant no. 101.01-2012.19.

References

  1. 1.
    Drasin, D.: The inverse problem of the Nevanlinna theory. Acta Math. 138, 83–151 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Drasin, D., Weitsman, A.: Meromorphic functions with large sums of deficiencies. Adv. Math. 15, 93–126 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Goldberg, A.A., Ostrovskii, I.V.: Value Distribution of Meromorphic Functions. Moscow, Nauka (1970). (in Russian)Google Scholar
  4. 4.
    Thiem, L.-V.: Beitrag sum Typenproblem der Riemannschen Flachen. Comment. Math. Helv. 20, 270–287 (1947)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Thiem, L.-V.: Uber das Umkehrproblem der Werterteilungslehre. Comment. Math. Helv. 23, 26–49 (1949)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Thiem, L.-V.: Le degré de ramification d’une surface de Riemann et la croissance de la caractéristique de la fonction uniformisante. C. R. Acad. Sc. Paris 228, 1192–1195 (1949)zbMATHGoogle Scholar
  7. 7.
    Thiem, L.-V.: Un problème de type généralisé. C. R. Acad. Sc. Paris 228, 1270–1272 (1949)zbMATHGoogle Scholar
  8. 8.
    Thiem, L.-V.: Sur un problème d’inversion dans la th éorie des fonctions méromorphes. Ann. Sci. Ecole Normale Sup. 67, 51–98 (1950)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Thiem, L.-V.: Sur un problème d’infiltration à travers un sol a deux couchés. Acta Sci. Vietnam., Sectio Sci. Math. et Phys. 1, 3–9 (1964)Google Scholar
  10. 10.
    Nevanlinna, R.: Uber Riemannschen Flachen mit endlich vielen Win- dungspunkten. Acta Math. 58, 298–375 (1932)Google Scholar
  11. 11.
    Palubarinova-Kochina, P.: Theorie Du Mouvement Des Eaux Souter- Rains. Moscow, Nauka (1977). (in Russian)Google Scholar

Copyright information

© Institute of Mathematics, Vietnam Academy of Science and Technology (VAST) and Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Thang Long Institute of Mathematics and Applied SciencesHanoiVietnam

Personalised recommendations