Advertisement

Normal Reduction Numbers for Normal Surface Singularities with Application to Elliptic Singularities of Brieskorn Type

  • Tomohiro Okuma
  • Kei-ichi WatanabeEmail author
  • Ken-ichi Yoshida
Article
  • 3 Downloads

Abstract

In this paper, we give a formula for normal reduction number of an integrally closed \(\mathfrak m\)-primary ideal of a two-dimensional normal local ring \((A,\mathfrak m)\) in terms of the geometric genus pg(A) of A. Also, we compute the normal reduction number of the maximal ideal of Brieskorn hypersurfaces. As an application, we give a short proof of a classification of Brieskorn hypersurfaces having elliptic singularities.

Keywords

Normal reduction number Geometric genus Hypersurface of Brieskorn type 

Mathematics Subject Classification (2010)

13B22 Secondary 14B05 14J17 

Notes

Funding Information

This work was partially supported by JSPS Grant-in-Aid for Scientific Research (C) Grant Nos., 25400050, 26400053, 17K05216.

References

  1. 1.
    Cutkosky, S.D.: A new characterization of rational surface singularities. Invent. Math. 102(1), 157–177 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Goto, S., Nishida, K.: The Cohen-Macaulay and Gorenstein Rees algebras associated to filtrations. Mem. Am. Math. Soc. 110(526) (1994)Google Scholar
  3. 3.
    Hochster, M., Huneke, C.: Tight closure, invariant theory, and the Briançon-Skoda theorem. J. Am. Math. Soc. 3(1), 31–116 (1990)zbMATHGoogle Scholar
  4. 4.
    Hoa, L.T., Zarzuela, S.: Reduction number and a-invariant of good filtrations. Comm. Algebra 22(14), 5635–5656 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Huneke, C.: Hilbert functions and symbolic powers. Michigan Math. J. 34(2), 293–318 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Huneke, C., Swanson, I.: Integral Closure of Ideals, Rings, and Modules. London Mathematical Society Lecture Note Series, vol. 336. Cambridge University Press, Cambridge (2006)Google Scholar
  7. 7.
    Konno, K., Nagashima, D.: Maximal ideal cycles over normal surface singularities of Brieskorn type. Osaka J. Math. 49(1), 225–245 (2012)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Lipman, J.: Rational singularities with applications to algebraic surfaces and unique factorization. Inst. Hautes Études Sci. Publ. Math. 36, 195–279 (1969)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Lipman, J., Teissier, B.: Pseudo-rational local rings and a theorem of Briançon-Skoda on the integral closures of ideals. Michigan Math. J. 28(1), 97–116 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Matsumura, H.: Commutative Ring Theory Cambridge Studies in Advanced Mathematics, vol. 8. Cambridge University Press, Cambridge (1989)Google Scholar
  11. 11.
    Meng, F.-N., Okuma, T.: The maximal ideal cycles over complete intersection surface singularities of Brieskorn type. Kyushu J. Math. 68(1), 121–137 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Okuma, T.: Cohomology of ideals in elliptic surface singularities. Illinois J. Math. 61(3–4), 259–273 (2017)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Okuma, T., Watanabe, K.-i., Yoshida, K.-i.: Good ideals and p g-ideals in two-dimensional normal singularities. Manuscripta Math. 150(3–4), 499–520 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Okuma, T., Watanabe, K.-i., Yoshida, K.-i.: Rees algebras and p g-ideals in a two-dimensional normal local domain. Proc. Am. Math. Soc. 145(1), 39–47 (2017)CrossRefzbMATHGoogle Scholar
  15. 15.
    Okuma, T., Watanabe, K.-i., Yoshida, K.-i.: A characterization of two-dimensional rational singularities via core of ideals. J. Algebra 499, 450–468 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Tomaru, T.: A formula of the fundamental genus for hypersurface singularities of Brieskorn type. Ann. Rep. Coll. Med. Care Technol. Gunma Univ. 17, 145–150 (1996)Google Scholar

Copyright information

© Institute of Mathematics, Vietnam Academy of Science and Technology (VAST) and Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Tomohiro Okuma
    • 1
  • Kei-ichi Watanabe
    • 2
    Email author
  • Ken-ichi Yoshida
    • 2
  1. 1.Department of Mathematical Sciences, Faculty of ScienceYamagata UniversityYamagataJapan
  2. 2.Department of Mathematics, College of Humanities and SciencesNihon UniversityTokyoJapan

Personalised recommendations