Acta Mathematica Vietnamica

, Volume 44, Issue 4, pp 993–1004

# Upper Triangular Operator Matrices, SVEP, and Property (w)

Article

## Abstract

When $$A\in \mathscr{L}(\mathbb {X})$$ and $$B\in \mathscr{L}(\mathbb {Y})$$ are given, we denote by MC an operator acting on the Banach space $$\mathbb {X}\oplus \mathbb {Y}$$ of the form $$M_{C}=\left (\begin {array}{cccccccc} A & C \\ 0 & B \\ \end {array}\right )$$. In this paper, first we prove that σw(M0) = σw(MC) ∪{S(A) ∩ S(B)} and $$\mathbf {\sigma }_{aw}(M_{C})\subseteq \mathbf {\sigma }_{aw}(M_{0})\cup S_{+}^{*}(A)\cup S_{+}(B)$$. Also, we give the necessary and sufficient condition for MC to be obeys property (w). Moreover, we explore how property (w) survive for 2 × 2 upper triangular operator matrices MC. In fact, we prove that if A is polaroid on $$E^{0}(M_{C})=\{\lambda \in \text {iso}\sigma (M_{C}):0<\dim (M_{C}-\lambda )^{-1}\}$$, M0 satisfies property (w), and A and B satisfy either the hypotheses (i) A has SVEP at points $$\mathbf {\lambda }\in \mathbf {\sigma }_{aw}(M_{0})\setminus \mathbf {\sigma }_{SF_{+}}(A)$$ and A has SVEP at points $$\mu \in \mathbf {\sigma }_{w}(M_{0})\setminus \mathbf {\sigma }_{SF_{+}}(A)$$, or (ii) A has SVEP at points $$\mathbf {\lambda }\in \mathbf {\sigma }_{w}(M_{0})\setminus \mathbf {\sigma }_{SF_{+}}(A)$$ and B has SVEP at points $$\mu \in \mathbf {\sigma }_{w}(M_{0})\setminus \mathbf {\sigma }_{SF_{+}}(B)$$, then MC satisfies property (w). Here, the hypothesis that points λE0(MC) are poles of A is essential. We prove also that if S(A) ∪ S(B), points $$\mathbf {\lambda }\in {E_{a}^{0}}(M_{C})$$ are poles of A and points $$\mu \in {E_{a}^{0}}(B)$$ are poles of B, then MC satisfies property (w). Also, we give an example to illustrate our results.

## Keywords

Weyl’s theorem Weyl spectrum Polaroid operators Property (wUpper triangular operator matrices SVEP

## Mathematics Subject Classification (2010)

Primary 47A55 47A53 47B20 Secondary 47A10 47A11

## References

1. 1.
Aiena, P.: Fredholm and Local Spectral Theory, with Applications to Multipliers. Kluwer Academic Publishers, Dordrecht (2004)
2. 2.
Aiena, P., Carpintero, C., Rosas, E.: Some characterizations of operators satisfying a-Browder’s theorem. J. Math. Anal. Appl. 311(2), 530–544 (2005)
3. 3.
Aiena, P., Peña, P.: Variations on Weyl’s theorem. J. Math. Anal. Appl. 324 (1), 566–579 (2006)
4. 4.
Aiena, P., Triolo, S.: Fredholm spectra and Weyl type theorems for Drazin invertible operators. Mediterr. J. Math. 13(6), 4385–4400 (2016)
5. 5.
Aiena, P., Triolo, S.: Local spectral theory for Drazin invertible operators. J. Math. Anal. Appl. 435(1), 414–424 (2016)
6. 6.
Aiena, P., Triolo, S.: Some perturbation results through localized SVEP. Acta Sci. Math. (Szeged) 82(1–2), 205–219 (2016)
7. 7.
Coburn, L.A.: Weyl’s theorem for nonnormal operators. Michigan Math. J. 13, 285–288 (1966)
8. 8.
Djordjević, D. S.: Perturbation of spectra of operator matrices. J. Operator Theory 48(3), 467–486 (2002)
9. 9.
Djordjević, S. V., Zguitti, H.: Essential point spectra of operator matrices through local spectral theory. J. Math. Anal. Appl. 338(1), 285–291 (2008)
10. 10.
Duggal, B.P.: Hereditarily normaloid operators. Extracta Math. 20(2), 203–217 (2005)
11. 11.
Duggal, B.P.: Upper triangular operator matrices, SVEP and Browder, Weyl theorems. Integral Equ. Operator Theory 63(1), 17–28 (2009)
12. 12.
Duggal, B.P.: Browder and Weyl spectra of upper triangular operator matrices. Filomat 24(2), 111–130 (2010)
13. 13.
Heuser, H.: Functional Analysis. Wiley, Chichester (1982)
14. 14.
Rakoc̆ević, V.: Operators obeying a-Weyl’s theorem. Rev. Roumaine Math. Pures Appl. 34(10), 915–919 (1989)
15. 15.
Rakoc̆ević, V.: On a class of operators. Mat. Vesnik 37(4), 423–426 (1985)
16. 16.
Taylor, A.E., Lay, D.C.: Introduction to Functional Analysis. Wiley, New York (1980) 