Advertisement

Cohen-Macaulay Criteria for Projective Monomial Curves via Gröbner Bases

  • Jürgen HerzogEmail author
  • Dumitru I. Stamate
Article
  • 7 Downloads

Abstract

We prove new characterizations based on Gröbner bases for the Cohen-Macaulay property of a projective monomial curve.

Keywords

Arithmetically Cohen-Macaulay Projective monomial curve Revlex Gröbner basis Numerical semigroup Apéry set 

Mathematics Subject Classification (2010)

Primary 13H10 13P10 16S36 Secondary 13F20 14M25 

Notes

Acknowledgements

We gratefully acknowledge the use of the Singular [8] software for our computations.

Funding Information

Dumitru Stamate was supported by the University of Bucharest, Faculty of Mathematics and Computer Science, through the 2017 Mobility Fund.

References

  1. 1.
    Arslan, F.: Cohen-Macaulayness of tangent cones. Proc. Am. Math. Soc. 128(8), 2243–2251 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Arslan, F., Mete, P., Şahin, M.: Gluing and Hilbert functions of monomial curves. Proc. Am. Math. Soc. 137(7), 2225–2232 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bresinsky, H.: On prime ideals with generic zero \(x_{i}=t^{n_{i}}\). Proc. Am. Math. Soc. 47, 329–332 (1975)zbMATHGoogle Scholar
  4. 4.
    Bresinsky, H., Schenzel, P., Vogel, W.: On liaison, arithmetical Buchsbaum curves and monomial curves in \(\mathbb {P}^{3}\). J. Algebra 86(2), 283–301 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Cavaliere, M. P., Niesi, G.: On monomial curves and Cohen-Macaulay type. Manuscripta Math. 42(2–3), 147–159 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Cimpoeaş, M., Stamate, D.I.: Gröbner–nice pairs of ideals. Preprint (2018)Google Scholar
  7. 7.
    Cox, D., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms, 3rd edn. Springer, New York (2007)Google Scholar
  8. 8.
    Decker, W., Greuel, G.-M., Pfister, G., Schönemann, H.: Singular 3-1-6 — a computer algebra system for polynomial computations. http://www.singular.uni-kl.de (2012)
  9. 9.
    Eisenbud, D.: Commutative Algebra. With a View Toward Algebraic Geometry Graduate Texts in Mathematics, vol. 150. Springer, New York (1995)Google Scholar
  10. 10.
    Ene, V., Herzog, J.: Gröbner Bases in Commutative Algebra Graduate Studies in Mathematics, vol. 130. American Medical Association, Providence (2012)zbMATHGoogle Scholar
  11. 11.
    Goto, S., Suzuki, N., Watanabe, K.-I.: On affine semigroup rings. Japan J. Math. (N.S.) 2(1), 1–12 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Herzog, J.: Generators and relations of Abelian semigroups and semigroup rings. Manuscripta Math. 3, 175–193 (1970)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Herzog, J., Hibi, T.: Monomial Ideals Graduate Texts in Mathematics, vol. 260. Springer, London (2011)Google Scholar
  14. 14.
    Herzog, J., Stamate, D.I.: On the defining equations of the tangent cone of a numerical semigroup ring. J. Algebra 418, 8–28 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Kamoi, Y.: Defining ideals of Cohen-Macaulay semigroup rings. Commun. Algo. 20(11), 3163–3189 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Kamoi, Y.: Defining ideals of Buchsbaum semigroup rings. Nagoya Math. J. 136, 115–131 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Morales, M., Dung, N.T.: Gröbner basis, a “pseudo-polynomial” algorithm for computing the Frobenius number. Preprint. arXiv:1510.01973 [math.AC] (2015)
  18. 18.
    Roune, B. H.: Solving thousand-digit Frobenius problems using Gröbner bases. J. Symb. Comput. 43(1), 1–7 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Rosales, J. C., García-Sánchez, P. A., Urbano-Blanco, J. M.: On Cohen-Macaulay subsemigroups of \(\mathbb {N}^{2}\). Comm. Algebra 26(8), 2543–2558 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Vu, T.: Periodicity of Betti numbers of monomial curves. J. Algebra 418, 66–90 (2014)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Institute of Mathematics, Vietnam Academy of Science and Technology (VAST) and Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Fachbereich MathematikUniversität Duisburg-EssenEssenGermany
  2. 2.Faculty of Mathematics and Computer ScienceUniversity of BucharestBucharestRomania

Personalised recommendations